Modeling and Simulation of a Hybrid System Solar Panel and Wind Turbine in the Quingeo Heritage Center in Ecuador
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32794
Modeling and Simulation of a Hybrid System Solar Panel and Wind Turbine in the Quingeo Heritage Center in Ecuador

Authors: Juan Portoviejo Brito, Daniel Icaza Alvarez, Christian Castro Samaniego

Abstract:

In this article, we present the modeling, simulations, and energy conversion analysis of the solar-wind system for the Quingeo Heritage Center in Ecuador. A numerical model was constructed based on the 19 equations, it was coded in MATLAB R2017a, and the results were compared with the experimental data of the site. The model is built with the purpose of using it as a computer development for the optimization of resources and designs of hybrid systems in the Parish of Quingeo and its surroundings. The model obtained a fairly similar pattern compared to the data and curves obtained in the field experimentally and detailed in manuscript. It is important to indicate that this analysis has been carried out so that in the near future one or two of these power generation systems can be exploited in a massive way according to the budget assigned by the Parish GAD of Quingeo or other national or international organizations with the purpose of preserving this unique colonial helmet in Ecuador.

Keywords: Hybrid system, wind turbine, modeling, simulation, Smart Grid, Quingeo Azuay Ecuador.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1317292

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 729

References:


[1] Neira. R, Velecela. M, ”Estudio de factibilidad de generación eléctrica mediante energía eólica y energía solar fotovoltaica para el sector de Garauzhi de la Parroquia Quingeo perteneciente a la Ciudad de Cuenca” , UPS; Ecuador, 2014.
[2] Zhang HL, Baeyens J, Degreve J, Caceres G. “Concentrated solar power plants: review and design methodology”. Renew Sustain Energy Review, vol.22, 201.
[3] Peterseim. J. H, Hellwig. U, Tadros. A, White. “Hybridisation optimization of concentrating solar thermal and biomass power generation facilities”, Science direct Solar Energy vol. 99, pp. 203– 214, 2014.
[4] Pedram Asef, R. Bargallo Perpina, Bereket T. Habte, A. Babaeian, “An Alternative Organic growth through Acquisitions Investigation on wind Energy”, International conference –Alternative and renewable Energy Quest, AREQ 2017, Energy Procedia, 1-3 February 2017, Spain.
[5] Iftekhar Hussain, C.M. Duffy, A. & Norton, B. (2015), “A Comparative Technological Review of Hybrid CSP-Biomass CHP Systems in Europe”, International Conference on Sustainable Energy & Environmental Protection, Paisley, UK, 11-14 August.
[6] Icaza D. Sami S., “Modeling, Simulation and Stability Analysis Using MATLAB of a Hybrid System Solar Panel and Wind Turbine in The Locality of Puntahacienda-Quingeo In Ecuador”, International Journal of Management and sustainability, 2018 vol. 7, No 1, pp 1-24 ISSN(e): 2306-0662. ISSN(p): 2306-9856. DOI: 10.18488/journal.11.2018.71.1.24.
[7] Binayak, B., Shiva, R. P., Kyung-Tae L., Sung-Hoon A., “Mathematical Modeling of Hybrid Renewable Energy System: A Review on Small Hydro-Solar-Wind Power Generation”, International Journal of Precision engineering and Manufacturing-green Technology, Vol. 1, No 2, pp. 157-173, 2014.
[8] Kavitha Sirasani, S. Y. Kamdi, “Solar Hydro Hybrid Energy System Simulation” International Journal of Soft Computing and Engineering (IJSCE), Volume-2, Issue-6, pp. 500-503, January 2013.
[9] GARCÍA, M., "Modelado de Sistemas Fotovoltaicos Autónomos". En: Fundamentos, dimensionado y aplicaciones de la energía solar fotovoltaica. Madrid: Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 2006, p.13, ISBN: 9788478345144.
[10] WENHAM, S.; et al., "Applied Photovoltaics". 2nd. ed., London: Earthscan, 2007, 134 p., ISBN: 978-184407-401-3.
[11] Marreno Santana, M, “Parámetros de rugosidad representativos de terrenos naturales”, Tesis para título de Master en Geofísica y Meteorología, Departamento de Física Aplicada en la Universidad de Universidad de Granada, Granada, España: Universidad de Granada, 2011.
[12] Ramazan Bayindir et al., “A Comprehensive Study on Microgrid Technology”, International Journal of Renowable Energy Research, Vol. 4, No. 4, 2014.
[13] Penyarat Chinda, Pascal Brault; The hybrid solid oxide fuel cell (SOFC) and gas turbine (GT) systems steady state modeling, International Journal of Hydrogen Energy, Volume 37, Issue 11, June 2012, Pages 9237–9248
[14] Dustin McLarty, Jack Brouwer, Scott Samuelsen, Fuel cell–gas turbine hybrid system design part I: Steady state performance, Journal of Power Sources, Volume 257, 1 July 2014, Pages 412–420.
[15] Atideh Abbasi and Zhenhua Jiang, Design and analysis of a fuel cell/gas turbine hybrid power system , Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, 2008 IEEE.
[16] Yoshimasa Ando, Hiroyuki Oozawa, Masahiro Mihara, Hirroki Irie, Yasutaka Urashita, Takuo Ikegami, Demonstration of SOFC-Micro Gas Turbine (MGT), Mitsubishi Heavy Industries Technical Review Vol. 52 No. 4 (December 2015).
[17] Craig S. Turchi, and Zhiwen M, Gas Turbine/Solar Parabolic Trough Hybrid Designs, To be presented at the ASME Turbo Expo 2011, Vancouver, Canada, June 6-10, 2011.
[18] Icaza D., Conce H., Flores P., Conce F., “Dimensioning of the main mechanical elements and final assembly of the DIAWIND-A2 wind turbine”, 2017 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), DOI: 10.1109/CHILECON.2017.8229551.
[19] Icaza D., Modeling, simulation and construction of the D-ICAZA-A1 wind turbine destined for the rural areas of Ecuador. Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), 2017 IEEE PES. Quito 2017/12/4.
[20] Colak I, Bayindir R, Fulli G, Tekin I, Demirtas K, Covrig CF. Smart grid opportunities and applications in Turkey. Renew Sustain Energy Rev 2014; 33: 344–52.
[21] Saha, N.C., Acharjee, S., Mollah, M.A.S., Rahman, K.T., and Rafi, F. H. M.,” Modeling and Performance Analysis of a Hybrid Power System”, Proc. of International Conference on Informatics Electronics & Vision (ICIEV), pp. 1-5, 2013.
[22] Mustafa, E., “Sizing and Simulation of PV-Wind Hybrid Power System”, International Journal of Photoenergy, Vol 2013, Article ID 217526, 10 pages, 2013.
[23] Colak I, Sagiroglu S, Fulli G, Yesilbudak M, Covrig CF. A survey on the critical issues in smart grid technologies. Renew Sustain Energy Rev 2014. submitted for publication.
[24] Bekele, G and Tadesse, G “Feasability Study of Small Hydro/Pv/Wind Hybrid System for off- Grid Rural Electrification in Ethiopia”, Applied Energy, Vol 97, pp.5-15, 2012.
[25] Fadaeenejed, M, Radzi, M. A., AbKadir, M.Z. and Hizam, H.,” Assessment of Hybrid Renewable Power Sources for Rural Electrification in Malaysia”, Renewable and Sustainable Energy Reviews, Vol. 30, pp. 299- 305, 2013.
[26] F. Viola, P. Romano, R.Miceli, D. La Cascia, M. Longo, “Economical evaluation of ecological benefits of the demand side management”, ICRERA 2014, Milwaukee 19-22, 2014.
[27] Fabio Viola, Pietro Romano, Eleonora Riva Sanseverino, Rosario Miceli, Marzia Cardinale, Giuseppe Schettino “An economic study about the installation of PV plants reconfiguration systems in Italy”, pubblicato in 2014 International Conference on Renewable Energy Research and Application (ICRERA), DOI: 10.1109/ICRERA.2014.7016534.
[28] Sami, S. and Icaza, D. “Modeling, Simulation of Hybrid Solar Photovoltaic, Wind turbine and Hydraulic Power System”, IJEST, International Journal of Engineering Science and Technology, Volume 7, Issue 9, September 30, 2015.
[29] Whiteman, C. D, “Meteorología de Montañas: Fundamentos y Aplicaciones”, Oxford: Oxford University Press, 2000.
[30] Icaza, D., Pauta, A., Saguay, G., & Solis, F. (2016). Control System for Less than Wind Turbines 1500W. Journal of Technology Innovations in Renewable Energy, 5(3), 99-106.
[31] Icaza D., Modeling, simulation and construction of the D-ICAZA-A1 wind turbine destined for the rural areas of Ecuador. Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), 2017 IEEE PES. Quito 2017/12/4.
[32] Icaza Alvarez, Daniel Orlando. Modelado, simulación y construcción de una turbina de viento DIAWIND-A2 como una nueva alternativa de generación eléctrica en áreas rurales de Ecuador. Killkana Técnica, 2018, vol. 1, no 3, p. 9-16.
[33] Icaza D, Córdova F, Toledo J, Carlos C, Lojano A, “Modeling and simulation of a hybrid system solar panel and wind turbine in the locality of Molleturo in Ecuador”. ICRERA 2017. San Diego CA USA pp 620-625. DOI: 10.1109/ICRERA.2017.8191134
[34] Flores Vázquez, Carlos Alberto, and Marcos Santiago Dávila Carrera. Modulación senoidal de ancho de pulso (SPWM) como etapa de control en módulos de pequeña y gran escala, para aplicaciones en variadores de frecuencia. BS thesis. 2009.
[35] Alvarez, S. R., Ruiz, A. M., & Oviedo, J. E. (2017, November). Optimal design of a diesel-PV-wind system with batteries and hydro pumped storage in a Colombian community. In Renewable Energy Research and Applications (ICRERA), 2017 IEEE 6th International Conference on (pp. 234-239). IEEE.