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Abstract—In this work, we introduce the qualitative and
quantitative concept of the strong stability method in the risk process
modeling two lines of business of the same insurance company or
an insurance and re-insurance companies that divide between them
both claims and premiums with a certain proportion. The approach
proposed is based on the identification of the ruin probability
associate to the model considered, with a stationary distribution of a
Markov random process called a reversed process.

Our objective, after clarifying the condition and the perturbation
domain of parameters, is to obtain the stability inequality of the ruin
probability which is applied to estimate the approximation error of a
model with disturbance parameters by the considered model. In the
stability bound obtained, all constants are explicitly written.

Keywords—Markov chain, risk models, ruin probabilities, strong
stability analysis.

I. INTRODUCTION

IN the actuarial literature, the evolution in time of the capital

of insurance company is often modeled by the stochastic

process of reserve resulting from the difference between the

premium-income and the pay-out process.

The ruin probability is one of the basic characteristic of

risk models. Various authors investigate the problem of its

evaluation, but it cannot, however, be found in an explicit form

for many risk models. Furthermore, parameters governing

these models are often unknown and one can only give some

bounds for their values. In such a situation the question of

stability becomes crucial (see [2], [10]).

In the stability theory, we establish the domain within which

a model may be used as a good approximation or idealization

of the real system under consideration. Such results give the

possibility of approximating some complicated systems by

other systems more exploitable or much simpler.

There exist numerous results on perturbation bounds

of Markov chains. The strong stability method has been

developed in the early 1980s by V. Kartashov (see [1], [8]).

It allows both to make qualitative and quantitative analysis

of some complex systems. This approach assumes that the

perturbation of the transition kernel is small with respect to a

certain norm. Such a strict condition allows us to obtain better

estimations on the stationary characteristics of the perturbation

chain. In addition, using this method, it is possible to obtain

inequalities of stability with an exact computation of the

constants.
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Using the strong stability method, the academician V.

Kalashnikov realized the first application of this method in

risk model and investigated the estimation of ruin probabilities

in the univariate risk models. Then, many authors extend the

application of this approach for different type of risk process.

In a general form, this approach (Strong stability method)

is based on the following three steps. The first step consists of

identification of the ruin probability associate to the considered

risk model with a stationary distribution for a specific random

process which is called a reversed process. The second step

consists of the embedding into a Markov process by equipping

it with supplementary coordinates. The third step consists of

the application of the quantitative aspect of this method, giving

estimation for the deviations of stationary distributions of the

two Markov process under comparison (see [7], [4], [6], [9]).

In this paper, we present the principle and some details

about the strong stability approach and its application in a

specific two-dimensional risk model where we divide, with

a certain proportion, claims and premiums of two lignes

of business in the same insurance company or between an

insurance and re-insurance company (see [3]).

In order to obtain a strong stability bound of the ruin

probability which is an approximation error of the disturbance

risk model by the ideal model where the calcul of its ruin

probability is explicit, we will delimit the perturbation domain

of parameters under the conditions of the strong stability

method.

II. A TWO-DIMENSIONAL RISK MODEL

A. Presentation

We consider a particular two dimensional risk model

where two compagnies divide the claim amounts in positive

proportions δ1 and δ2 with δ1+δ2 = 1 and the according

premiums rates c1 and c2.

Then, the evolution in time of the i’th company is modeled

by the process of reserve {Xi(t), t ≥ 0} described by: (see

[3])

Xi(t) = ui + cit− δiS(t), t ≥ 0, i = 1, 2, (1)

where ui are the initial reserves and

S(t) =

N(t)∑
k=1

Zk,

where {N(t), t ≥ 0} is a Poisson process with intensity λ
and {Zk}k is a sequence of i.i.d. positive random variables
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independent of {N(t), t ≥ 0} with common distribution

function F such that mean E(Zk) =
1
μ .

We shall assume that the second company, to be called the

reinsurer, gets smaller profits per amount paid:

p1 =
c1
δ1

>
c2
δ2

= p2.

In addition, we assume that pi >
λ
μ , i = 1, 2.

The concept of ruin in multi-dimensional cases could have

different meanings and interpretations.

In this paper, we consider the following type of ruin time:

τ(u1, u2) = inf{t ≥ 0 : X1(t) < 0 or X2(t) < 0}. (2)

For the ruin time considered, the corresponding ruin

probability is denoted by:

ψ(u1, u2) = P (τ(u1, u2) < ∞). (3)

The ruin probabilities under multi-dimensional models

rarely admet analytical solutions. It is possible to obtain

a closed solution for ψ(u1, u2) if Zk are exponentially

distributed with intensity μ.

The solution of the two dimensional ruin problem strongly

depends on the relative sizes of the proportion (δ1, δ2) and

premium rates (c1, c2).

B. One Dimensional Reduction

The reduction of the considered risk model to one

dimensional model is based on the following important

observation:(see [3])

τ(u1, u2) = inf{t ≥ 0 : S(t) > b(t)},
where

b(t) = min{(u1 + c1t)/δ1, (u2 + c2t)/δ2}
⇒ b(t) = min{u1

δ1
+

c1
δ1

t,
u2

δ2
+

c2
δ2

t}.

We suppose that the initial reserves u1 and u2 are such that

(u1, u2) ∈ C = {(u1, u2) : u2 ≤ (
δ2
δ1

)u1}. (4)

In this case, the barrier b(t) = (u2 + c2t)/δ2 is linear and

the ruin happens always for the second company.

Thus, as we already observed, the problem considered

reduces in fact to the classical one-dimensional ultimate ruin

probability with premium c2 and claims δ2Z:

ψ(u1, u2) = ψ2(u2) = P (τ2(u2) < ∞), (5)

where τ2(u2) = inf{t ≥ 0, X2(t) < 0} and ψ2(u2) is the ruin

probability of the second process {X2(t), t ≥ 0}.

It is well known that in the case of the exponential claims

sizes with intensity μ, it reduces to:

ψ2(u2) = C2e
−(γ2/δ2)u2 ,

where γ2 = μ− λδ2/c2 and C2 = λδ2
μc2

= λ
μp2

, p2 = c2
δ2
.

An analyze of the opposite case u2

δ2
> u1

δ1
have been realized

bye F. Avram and al. in [3].

For general distribution of the claim amounts, where the

evaluation of the ruin probabilities is not explicite (see [5]),

we propose, in the case of one dimensional reduction where
u2

δ2
≤ u1

δ1
, the application of the strong stability method to

obtain un estimation of the ruin probability deviation which

will be given as a stability inequality with respect to a certain

norm.

III. THE STRONG STABILITY CONCEPT

Let mE be the space of finite measures on the probabilisable

space (E, E), and fE the space of bounded measurable

function on E. We associate with each transition kernel P
the linear mapping

μP (A) =

∫
E

μ(dx) P (x,A), ∀ A ∈ E , (6)

Pf(x) =

∫
E

P (x, dy)f(y), ∀ x ∈ E. (7)

Introduce on mE the class of norms of the form

‖μ‖v =

∫
E

v(x)|μ|(dx), (8)

where v is an arbitrary measurable function (not necessarily

finite) bounded below away from a positive constant, and |μ|
is the variation of the measure μ.

This norm induces in the space fE the norm

‖f‖v = sup{|μf |, ‖μ‖v ≤ 1} = sup
x∈E

[v(x)]−1|f(x)|, ∀f ∈ fE .
(9)

Let us consider B, the space of linear operators, with the

norm

‖P‖v = sup
x∈E

(
[v(x)]−1

∫
E
v(y)|P (x, dy)| )

. (10)

Definition 1:
A Markov chain X with a transition kernel P and invariant

measure π is said to be strongly v−stable with respect to the

norm ‖ . ‖v , if ‖P‖v < ∞, and each stochastic kernel Q on

the space in some neighborhood {Q : ‖Q − P‖ < ε} has

a unique invariant measure ν = ν(P ) and ‖ν − π‖v → 0 as

‖Q− P‖v → 0.

In the sequel, we use the following results:

Theorem 1 (see [1]):
The Markov chain X with the transition kernel P and invariant

measure π is strongly v-stable with respect to the norm ‖ . ‖v
if and only if there exist a measure α and a nonnegative

measurable function h on E such that πh > 0, α1 = 1, αh >
0, and

• The operator T = P − h ◦ α is nonnegative.

• There exist ρ < 1 such that Tv(x) ≤ ρv(x) for x ∈ E
• ‖P‖v < ∞.

Here 1 is the function identically equal to 1 and ◦ denotes

the convolution between a measure and a function.

The following result was proved in [8].

Theorem 2 (see [7]):
Let v be the fixed weight function and assume that a Markov
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chain with the transition probability P , satisfying ‖P‖v < ∞,

possess a unique stationary distribution π. Assume also that

there exist a non-negative function h and a probability measure

α such that P can be splitted as follows:

P (x, .) = T (x, .) + h(x).α(.), (11)

where

‖π‖h > 0, ‖α‖h > 0 (12)

and

‖T‖v ≤ ρ < 1. (13)

Then each Markov chain with the transition probability P ′

satisfying the inequality

� = ‖P − P ′‖v < �0 ≡ (1− ρ)2

1− ρ+ ρ‖α‖v (14)

has a unique stationary π′ and, furthermore

‖π − π′‖v ≤ �‖α‖v
(1− ρ)(�0 −�)

. (15)

IV. STRONG STABILITY OF THE REDUCED

TWO-DIMENSIONAL RISK MODEL

In this section, we are interested to apply the qualitative

and quantitative aspects of the strong stability approach

which serve for delimiting domain where the tow-dimensional

classical risk model considered can be a good approximation

of another disturbance two-dimensional risk model and to

estimate the error of approximation.

In order to simplify this study, we suppose that

(u1, u2) ∈ C = {(u1, u2) : u2 ≤ ( δ2δ1 )u1} which is the

condition for the reduction to one dimensional model.

In first, we present the reversed process associate to the

reduced considered model.

A. Reversed Process

Since the ruin can only happen at the claim occurrence times

{Tn}, the probability of ruin Ψ2(u2), defined by the relation

(5), can be expressed in terms of the process {X2
Tn

} as

Ψ2(u2) = P
(

inf
n≥1

(X2
Tn

) < 0/ X2
0 = u2

)
, (16)

where {Tn, n ≥ 1} be a successive i.i.d. occurrence times.

The reversed process {Vn}n associate to our risk model can

be defined by the equation

∀ n ≥ 0, Vn+1 =
(
Vn − c2θn+1 + δ2Zn+1

)
+
, V0 = 0,

(17)

with Tn = θ1 + θ2 + · · · + θn and θn be successive i.i.d

inter-occurrence times.

According to the recursive form of the reversed process

{Vn}n≥0, we have that Vn+1 depend only on Vn, θn+1 and

δ2Zn+1 where the random variables θn+1 and Zn+1 are

independent on n and on the state of the system before n.

Then {Vn}n≥0 is a homogenous Markov chain and its state

space is E = R+. Denote by

P (x,A) = P (Vn+1 ∈ A/Vn = x) (18)

its transition probability.

Using this Markov chain {Vn}n≥0, it is well-known that

Ψ2(u2) = lim
n→∞P (Vn > u2). (19)

B. Transition Kernel

The transition kernel associate to the chain {Vn}n≥0 defined

on the probabilisable space (E, E) can be splitted as follows:

∀ x ∈ R+ and ∀ A ∈ E , we have:

P (x,A) = P (V1 ∈ A/V0 = x)

= P
(
(V0 − c2θ1 + δ2Z1)+ ∈ A/V0 = x

)
= P

(
0 < (x− c2θ1 + δ2Z1) ∈ A

)
+ P

(
0 ∈ A

)
P
(
x− c2θ1 + δ2Z1 ≤ 0

)
= T (x,A) + α(A).h(x), (20)

with

T (x,A) = P
(
0 < (x− c2θ1 + δ2Z1) ∈ A

)
,

α(A) = δ0(A),

where δ0 is a probability measure concentrated at 0 ( Dirac

measure), and

h(x) = P
(
c2θ1 − δ2Z1 ≥ x

)
, x ∈ R+.

To apply the Theorem 1 to the Markov chain {Vn}n≥0, we

choose the function v(x) = eεx, x ∈ R+.

All conditions of this theorem are satisfied for

• T (x,A) = P
(
0 < (x− c2θ1 + δ2Z1) ∈ A

)
,

• α(A) = δ0(A) (Dirac measure),

• h(x) = P
(
c2θ1 − δ2Z1 ≥ x

)
, x ∈ R+,

obtained by the precedent decomposition of the transition

kernel P , with

ρ = E
(
exp{ε(δ2Z1 − c2θ1)}

)
. (21)

Finally, the Markov chain {Vn}n≥0 is strongly stable for

the weight function v(x) = eεx, x ∈ R+ which means that a

small deviation of parameters led to a small deviation of the

characteristics.

Let us now illustrate how Theorem 2 can be applied to

obtain stability bounds.

C. Stability Inequalities

Under le condition given in the relation (4), the

two-dimensional classical risk model is completely determined

by the vector of parameters a = (c2, λ, F ). As we have seen,

the probability of ruin Ψ2(u2) coincides with the stationary

distribution of the reversed process {Vn}n≥0 (see (19)) to

exceed the level u2.

Let a′ = (c′2, λ
′, F ′) be the vector parameter governing

another reduced bivariate risk model, its ruin probability being

Ψ′
2(u2) and {V ′

n}n≥0 its reversed process associate.

To be able to estimate numerically the margin between the

stationary distributions of the Markov chains {Vn}n≥0 and

{V ′
n}n≥0, we estimate the the deviation of transition kernel

with respect to the norm ‖ . ‖v .
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According to [7], the deviation ‖P −P ′‖v can be estimated

as follows:

‖P − P ′‖v ≤ 2 E eεZ ln | λc
′
2

λ′c2
|+ ‖B −B′‖v, (22)

where B and B′ are, respectively, the distribution functions

of the random variables δ2Z and δ′2Z
′ with

∀x ∈ R, B(x) = P (δ2Z ≤ x) = F ( x
δ2
)

and B′(x) = F ′( x
δ2
).

Denote

μ(a, a′) = 2 E eεZ ln | λc
′
2

λ′c2
|+ ‖B −B′‖v.

Under assumption μ(a, a′) < (1− ρ)2 and from inequality

(15) of Theorem 2, the distance between ruin probabilities is

expressed as follows:

‖Ψ2(u2)−Ψ′
2(u2)‖v ≤ μ(a, a′)

(1− ρ)
(
(1− ρ)2 − μ(a, a′)

)
(23)

where ρ is given by relation (21).

Then, we obtain an estimation for the deviation of the ruin

probability ψ2(u2) with respect to the norm ‖ . ‖v . Thus, under

the condition of the reduction which is

(u1, u2) ∈ C = {(u1, u2) : u2 ≤ (
δ2
δ1

)u1},

the deviation ‖Ψ2(u2) − Ψ′
2(u2)‖v is equal to the deviation

of Ψ(u1, u2); ‖Ψ(u1, u2) − Ψ′(u1, u2)‖v associate to the

two-dimensional risk process considered.

V. CONCLUSION

In this work, we proved the applicability of the strong

stability method to approximate one type of the ruin

probabilities associates to a two dimensional risk process in

the case of one dimensional reduction.

The stability bounds of ruin probability derived above

contain only explicitly written parameters. The precision

obtained allows us to confirm the efficiency of this method

and its importance for practical problems.
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