Application of Subversion Analysis in the Search for the Causes of Cracking in a Marine Engine Injector Nozzle
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32807
Application of Subversion Analysis in the Search for the Causes of Cracking in a Marine Engine Injector Nozzle

Authors: Leszek Chybowski, Artur Bejger, Katarzyna Gawdzińska

Abstract:

Subversion analysis is a tool used in the TRIZ (Theory of Inventive Problem Solving) methodology. This article introduces the history and describes the process of subversion analysis, as well as function analysis and analysis of the resources, used at the design stage when generating possible undesirable situations. The article charts the course of subversion analysis when applied to a fuel injection nozzle of a marine engine. The work describes the fuel injector nozzle as a technological system and presents principles of analysis for the causes of a cracked tip of the nozzle body. The system is modelled with functional analysis. A search for potential causes of the damage is undertaken and a cause-and-effect analysis for various hypotheses concerning the damage is drawn up. The importance of particular hypotheses is evaluated and the most likely causes of damage identified.

Keywords: Complex technical system, fuel injector, function analysis, importance analysis, resource analysis, sabotage analysis, subversion analysis, TRIZ.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1316087

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1139

References:


[1] C. Cempel, Inżynieria kreatywności w projektowaniu innowacji. Radom–Poznań: Politechnika Poznańska i Instytut Technologii Eksploatacji, 2013.
[2] L. Chybowski, and D. Idziaszczyk, „O antropocentrycznym i technocentrycznym podejściu w procesie tworzenia innowacji (Anthropocentric and technocentric approach in creating innovation),” in Systemy wspomagania w inżynierii produkcji. Inżynieria Systemów Technicznych, vol. 2(11), J. Brodny, Ł. Dziemba, Eds. Gliwice: P.A. NOVA, 2015, pp. 51–63.
[3] L. Chybowski, R. Grzebieniak, and Z. Matuszak, „Uwagi o możliwości wykonania zadania przez operatora systemu technicznego” (On possibilities of task execution by technical system operator). Vaprosy povyšeniâ effektivnosti sudovyh i stacionarnyh energetičeskih sistem, in Mieždunarodnyj sbornik naučnyh trudov „Nadiožnost i effektivnost techničeskih sistem”, Kaliningrad: KGTU, 2006, pp. 72–78.
[4] L. Chybowski, and Z. Matuszak, “Remarks on human reliability with reference to marine power plant operation,” Scientific Journals of the Maritime University of Szczecin, vol. 19(91), pp. 16–23, 2009.
[5] L. Chybowski, and Z. Matuszak, (2008) “Opis struktury systemów energetyczno-napędowych i technologicznych jednostek rybackich z wykorzystaniem wektora zdarzeń zewnętrznych (Fishing vessels power, propulsion and technological plant systems’ structure description using external events vector),” in Balttehmaš, Kaliningrad: KGTU, 2008, pp. 196–203.
[6] L. Chybowski, Z. Matuszak, and P. Pełka, “Components redundancy in power and propulsion systems installed onboard platform supply vessels,” in Risk, Quality and Reliability, R. Briš, Ed. Ostrava: VSB – Technical University of Ostrava, 2007, pp. 89–93.
[7] P. Pełka, and L. Chybowski, “Analiza obciążeń systemów energetyczno-napędowych statków obsługujących platformy wydobywcze” (Platform support vessels power and propulsion units loads analysis), Ekonomika i Organizacja Przedsiębiorstwa, no. 6 (689), pp. 87–88, 2007.
[8] A. Bejger, “Analysis of damage of selected elements of injection system of marine diesel engines,” Journal of Polish CIMAC, vol. 6, no. 2, pp. 23–29, 2011.
[9] C. Behrendt, and K. Gawdzińska, “Pitting Corrosion of Marine Steam Boilers-The Case Study,” Solid State Phenomena, vol. 252, pp. 11–20, 2016.
[10] L. Chybowski, and Z. Matuszak, “Marine auxuliary diesel engine turbocharger damage (explosion) cause analysis”, Journal of Polish CIMAC, vol. 2, no. 2, pp. 100–105, 2007.
[11] K. Gawdzińska, “Application of diffraction and X-ray microanalysis in study of MMC structure,” Advanced Materials Research, vol. 690, pp. 368–373, 2013.
[12] K. Gawdzińska, L. Chybowski, and W. Przetakiewicz, “Proper matrix-reinforcement bonding in cast metal matrix composites as a factor of their good quality,” Archives of Civil and Mechanical Engineering, vol. 16, no. 3, pp. 553–563, 2016.
[13] V. V. Souchkov, Subversion Analysis. Training Course. Module of MATRIZ Level 3 Certification Training. ICG Training & Consulting, Enschede, 2016.
[14] V. V. Mitrofanov, and V. I. Sokolov, “The nature of the Russell effect,” Physics of Solid Bodies, vol. 16, no. 8, pp. 24–35, 1974.
[15] W. J. Russell, (1897) “On the Action Exerted by Certain Metals and other Substances on a Photographic Plate,” in Proc. of the Royal Society of London, vol. 61, pp. 424–433, doi: 10.1098/rspl.1897.0055.
[16] O. M. Rayleigh, “Polishing of glass surfaces,” in Proc. of the Optical Convention. London: Northgate & Williams, 1905, pp. 73–78.
[17] S. Ungvari, The Anticipatory Failure Determination Fact Sheet. (Online) 1999, TRIZ-Journal web page: http://www.metodolog.ru/triz-journal/archives/1999/10/a/index.htm (accessed: 27.06.2017).
[18] G. Altshuller, B. Zlotin, A. Zusman, and V. Filatov, Poisk novyh idej: ot ozareniâ k tehnologii (Searching for New Ideas). Kišenev: Kartâ Moldovenâskè, 1989.
[19] B. Zlotin, and A. Zusman, Rešenie issledovateľskih zadač (Solving all scientific problems). Kišenev: Kartâ Moldovenâskè, 1989.
[20] S. Kaplan, “Finding failures before they find us: An introduction to the theory of scenario structuring and the method of anticipatory failure determination,” in Proc. of the 9th Symposium on Quality Function Deployment, June, l997.
[21] S. Kaplan, S. Visnepolschi, B. Zlotin, and A. Zusman, New tools for failure and risk analysis. Anticipatory Failure Determination® (AFD) and the Theory of Scenario Structuring. Detroit: Ideation International Inc, 2005.
[22] D. Bean, R. Smith, and S. Bedekar, Using Office Communicator to Build Organizational Trust. 42 Project Web page: http://www.42projects.org/docs/trust%20subversion%20analysis.pdf (accessed: 27.06.2017).
[23] D. Regazzoni, and D. Russo, “TRIZ tools to enhance risk management,” Procedia Engineering, vol. 9, pp. 40–51, 2011, doi: 10.1016/j.proeng.2011.03.099.
[24] L. Chybowski, K. Gawdzińska, and W. Przetakiewicz, “AHP based multi-criteria function analysis as a TRIZ tool for complex technical systems,” in Proc. of TRIZfest 2017, Kraków, submitted for publication.
[25] V. V. Souchkov, TRIZ & Systematic Innovation. Training Course Techniques: Advanced Part. ICG Training & Consulting, Enschede, 5–9, 2016.
[26] A. Bejger, Zastosowanie fal sprężystych emisji akustycznej do diagnozowania układów wtryskowych okrętowych silników spalinowych (An application of acoustic emission elastic waves for diagnosing marine diesel injection systems). Kraków: Fotobit, 2012.
[27] A. Bejger, “Alternatywna metoda badań układu wtryskowego okrętowego silnika spalinowego (Alternative Research Method for the Marine Engine Injection System),” Zeszyty Naukowe Akademii Morskiej w Szczecinie (Scientific Journals of the Maritime University of Szczecin), vol. 5(77), pp. 47–54, 2005.
[28] Z. Raunmiagi, “Verification of diesel engine injection valves prior to fuel injector repair,” Scientific Journals of the Maritime University of Szczecin, vol. 14(86), pp. 38–42, 2008.
[29] Fuel injector of diesel engines. Marine study. Web page: http://marinestudy.net/fuel-injector-of-diesel-engines/ (accessed: 14.06.2017).
[30] L. Chybowski, and Z. Matuszak, “Stimuli accumulation and damage causes overlapping,” in Innovacii v nauke i obrazovanii 2007. Kaliningrad: KGTU, 2007, pp. 34–37.
[31] A. Bejger, S. Berczyński, and K. Gawdzińska, “The use of Pareto-Lorenz analysis for the determination of faults in fishing vessel refrigerating systems,” Archives of Mechanical Technology and Automation, vol. 32, no. 3, pp. 7–13, 2012.
[32] W. Kostrzewa, K. Gawdzińska, and A. Bejger, “The use of Pareto-Lorenz analysis for the determination of faults in fishing vessel refrigerating systems,” Scientific Journals of the Maritime University of Szczecin, vol. 36(108), pp. 90–93, 2013.
[33] L. Chybowski, “Example of Comprehensive Qualitative-Quantitative Reliability Importance Analysis of Complex Technical Systems on a Marine Propulsion Plant,” in Symposium Proceedings IARS 2012, Reliasoft Corporation, Warszawa, 2012, 7/t2.
[34] L. Chybowski, M. Twardochleb, and B. Wiśnicki, “Multi-criteria decision making in components importance analysis applied to a complex marine system,” Naše more, vol. 63(4), pp. 264–270, 2016, doi: 10.17818/NM/2016/4.3.