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Abstract—In this paper, the finite-time symplectic synchronization
between two different chaotic systems is investigated. Based on the
finite-time stability theory, a simple adaptive feedback scheme is
proposed to realize finite-time symplectic synchronization for the
Lorenz and Lü systems. Numerical examples are provided to show
the effectiveness of the proposed method.
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I. INTRODUCTION

CHAOS is very interesting nonlinear phenomenon in

physical science. The most important feature of

chaotic systems is sensitive to its initial conditions. The

synchronization of two chaotic systems with different initial

conditions is of great important and has been intensively

studied in the last few decades.

The basic idea of synchronization is to use the output

of the drive system to control the response system,

so that the trajectories of the response system will

reach to the trajectories of the drive chaotic system

asymptotically. Chaos synchronization has attracted more and

more attention from various disciplines due to its potential

application in many fields such as secure communication [2],

neuroscience [3], chemical reaction[4], and complex networks

[5], etc. During the past three decades, many kinds of

synchronization have been proposed and investigated, such

as complete synchronization [6], anti-synchronization [7],

phase synchronization [8], lag synchronization [9], projective

synchronization [10], function projective synchronization

(FPS), etc. Among these, the generalized synchronization

[11], [12], [13] has received much attention which refers

to that the corresponding state variables of master-slave

systems evolve in some functional relation. The generalized

synchronization is noticeable because it is more applicable

to secure communication than complete synchronization by

introducing an additional function. More recently, the idea

of symplectic synchronization [14] has been proposed and

developed, which can be seen as an extension of generalized

synchronization. Hence, symplectic synchronization can be

expected to achieve better performance for applications than

generalized synchronization.

In many practical applications, it is more proper to achieve

a convergence in a given time than asymptotically. In

recent years, some finite-time control techniques have been

introduced to realize chaos synchronization. For example,

Li proposed to use finite time control techniques to solve
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the synchronization problem of two chaotic systems so that

two chaotic systems can be synchronized in finite time [15],

[16]. Aghababa investigated the problem of finite-time chaos

synchronization between two different chaotic systems with

fully unknown parameter and introduced an adaptive sliding

mode controller to ensure the convergence of the chaotic

systems in a given finite time [17]. The proposed technique

had finite-time convergence and stability in both the reaching

and sliding mode phases. In [18], the authors showed that

finite-time synchronization can be achieved with only a single

control input based on the finite-time stability theory and

adaptive control technique. In [19], based the Ito formula and

Lyapunov stability theory, the finite-time synchronization of

switched stochastic master-slave Rössler systems is studied.

It is shown that the finite-time synchronization problem of

stochastic Rössler systems can be achieved with a time-driven

switching law.

Motivated by the above discussions, the symplectic

synchronization between two nonidentical chaotic systems

in finite time is investigated in this paper. Based on

finite-time stability theory, an adaptive controller is designed to

achieve finite-time symplectic synchronization. As numerical

examples, the Lorenz chaotic system and the Lü system are

taken as the target system and response system, respectively.

Numerical simulations demonstrate the effectiveness of the

proposed scheme.

The rest of this paper is organized as follows. Section

II gives the description of the Lorenz system and the Lü

system. In Section III, by employing finite-time stability theory

and adaptive control theory, we obtain a sufficient condition

for finite time symplectic synchronization between a Lorenz

system and a Lü system. Numerical simulations are performed

in section 4 to verify the effectiveness of the presented

schemes, and concluding remarks are made in the final section.

II. DESCRIPTION OF THE SYSTEMS

The Lorenz system [20] is given by

⎧⎪⎨
⎪⎩

ẋ1 = a(x2 − x1)

ẋ2 = cx1 − x1x3 − x2

ẋ3 = x1x2 − bx3

(1)

where x1, x2, x3 are state variables, a, b, c are all positive real

parameters. When the system parameters are a = 10, b =
28, c = 8/3, the system (1) has a chaotic attractor. The Lorenz

chaotic system with initial conditions (x1(0), x2(0), x3(0)) =
(−2,−1, 3) is depicted in Fig. 1.
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Fig. 1 Typical dynamical behaviors of Lorenz system

The Lü chaotic system is described by [21]:
⎧⎪⎨
⎪⎩

ẏ1 = a1(y2 − y1)

ẏ2 = c1y2 − y1y3

ẏ3 = −b1y3 + y1y2

(2)

where y1, y2, y3 are state variables, a1, b1, c1 are all positive

real parameters. When we selected the parameters as a1 =
36, b1 = 3, c1 = 20, the system exhibits a chaotic behaviour,

as shown in Fig. 2.

Fig. 2 Typical dynamical behaviors of Lü system

III. FINITE TIME SYMPLECTIC SYNCHRONIZATION

BETWEEN LORENZ SYSTEM AND LÜ SYSTEM

An illustration of the finite time symplectic synchronization

is now presented. Consider a drive system

ẋ = f(x) (3)

and the controlled response system

ẏ = g(y) + u(x, y, t) (4)

where x = (x1, x2, ..., xn)
T and y = (y1, y2, ..., yn)

T are

the state vectors of systems (3) and (4), respectively; f, g :
Rn → Rn are two continuous nonlinear vector functions and

u(x, y, t) is is the controller to be designed.

For symplectic synchronization, the error system is defined

as

e(t) = y(t)−H(x, y, t)− F (t) (5)

where F (t) is a given function of time in different form, such

as a regular or a chaotic function.

Our control goal is to design the controller u(t, x, y) for

the response system (2), such that the error system (5)

can be stable at the zero equilibriumin in a finite-time, i.e.

lim
t→T

e(t) = 0, and e(t) ≡ 0, if t > T . Note that when

H(x, y, t) = x, (3) reduces to the generalized synchronization

given in [12]. Therefore both complete synchronization and

generalized synchronization can be seen as a special case of

symplectic synchronization.

In order to observe finite time symplectic synchronization

between the Lorenz and Lü systems, we assume that the

Lorenz system is the drive system and the Lü system is the

response system. Then the drive system is given in (1) and the

response system can be described by follows:
⎧⎪⎨
⎪⎩

ẏ1 = a1(y2 − y1) + u1

ẏ2 = c1y2 − y1y3 + u2

ẏ3 = −b1y3 + y1y2 + u3

(6)

where yi(i = 1, 2, 3) are state variables, and ui(i = 1, 2, 3)
are the controllers such that the two chaotic systems can be

synchronized in the case that:
⎧⎪⎪⎨
⎪⎪⎩

lim
t→T

(y1(t)−H1(x, y, t)− F1(t)) = 0

lim
t→T

(y2(t)−H2(x, y, t)− F2(t)) = 0

lim
t→T

(y3(t)−H2(x, y, t)− F3(t)) = 0

(7)

and ei(t) ≡ 0(i = 1, 2, 3), if t > T .

In this study, we take F1(t) = sin(x3(t)), F2(t) =
sin(x1(t)) , F3(t) = sin(x2(t)). They are chaotic functions of

time. H(x, y, t) is choose as Hi(x, y, t) = −x2
i yi, i = 1, 2, 3.

So the error variables can be expressed as follows:
⎧⎪⎨
⎪⎩

e1 = y1(1 + x2
1)− sin(x3)

e2 = y2(1 + x2
2)− sin(x1)

e3 = y3(1 + x2
3)− sin(x2)

(8)

Then the detail error dynamics is written as:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ė1(t) = (1 + x2
1)(a1(y2 − y1) + u1) + 2x1y1(a(x2 − x1))

−cos(x3)(x1x2 − bx3)

ė2(t) = (1 + x2
2)(c1y2 − y1y3 + u2) + 2x2y2(cx1 − x1x3 − x2)

−cos(x1)(a(x2 − x1))

ė3(t) = (1 + x2
3)(−b1y3 + y1y2 + u3) + 2x3y3(x1x2 − bx3)

−cos(x2)(cx1 − x1x3 − x2)
(9)
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Before developing the design procedure of the proposed

finite-time controller for synchronizing two different chaotic

systems, we introduce two necessary lemmas.
Lemma 1 [22]. Consider the system

ẋ = f(x), f(x) = 0, x ∈ Rn (10)

where f : D → Rn is continuous on an open neighborhood

D ⊂ Rn. Assume that a continuous, positive-definite function

V (x), real numbers p > 0, 0 < ξ < 1, satisfies the following

differential inequality:

V̇ (x) + pV ξ(x) ≤ 0, ∀x ∈ D (11)

Then, the origin of system (7) is a finite-time stable

equilibrium.
Lemma 2 [23]. For any given a1, a2, ..., an ∈ R and 0 <

q < 2, the following inequality holds:

|a1|q + |a2|q...+ |an|q ≥ (a21 + a22 + ...+ a2n)
q/2 (12)

Theorem 1. The error system (9) can be stable at the zero

equilibriumin in a finite time for any different initial condition

with following adaptive controller⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1 = −2x1y1(a(x2−x1))+x4)+cos(x3)(x1x2−bx3)−ksgn(e1)|e1|r)
(1+x2

1)

−(a1(y2 − y1))

u2 = −2x2y2(cx1−x1x3−x2)+cos(x1)(a(x2−x1)))−ksgn(e2)|e2|r
(1+x2

2)

−(c1y2 − y1y3)

u3 = −2x3y3(x1x2−bx3)+cos(x2)(cx1−x1x3−x2))−ksgn(e3)|e3|r
(1+x2

3)

−(−b1y3 + y1y2)
(13)

where k > 0 is a parameter and r is a constant and 0 < r < 1.
Proof. Lyapunov function is constructed in the form of

V (e1, e2, e3) =
1

2
(e21 + e22 + e23) (14)

Then time derivative of V along the trajectory of the error

system (9) is as follows

V̇ = (e1ė1 + e2ė2 + e3ė3)

= e1((1 + x2
1)(a1(y2 − y1) + u1) + 2x1y1(a(x2 − x1))

− cos(x3)(x1x2 − bx3))

+ e2((1 + x2
2)(c1y2 − y1y3 + u2) + 2x2y2(cx1 − x1x3 − x2)

− cos(x1)(a(x2 − x1)))

+ e3((1 + x2
3)(−b1y3 + y1y2 + u3) + 2x3y3(x1x2 − bx3)

− cos(x2)(cx1 − x1x3 − x2))
(15)

Substituting (13) into (15), we have

V̇ = −k(e1sgn(e1)|e1|r)+e2sgn(e2)|e2|r)+e3sgn(e3)|e3|r))
(16)

Using sgn(ei) = |ei|/ei, we have

V̇ = −k(|e1|1+r + |e2|1+r + |e3|1+r) (17)

From Lemma 2, we obtain

V̇ ≤ −k2
1+r
2 (e21 + e22 + e23)

1+r
2 = −k2

1+r
2 V

1+r
2 (18)

Therefore, from Lemma 1, the errors ei(t) = 0(i = 1, 2, 3)
will converge to zero in the finite time. This completes the

proof.

IV. NUMERICAL EXAMPLES

In this section, we perform numerical simulations to

demonstrate the effectiveness of the proposed symplectic

synchronization scheme. In the numerical simulations, the

fourth-order Runge-Kutta method is used to solve the system.

The system parameters are selected as a = 10, b = 28, c =
8/3, and a1 = 36, b1 = 3, c1 = 20, such that the drive system

(1) and the response system (2) are chaotic with no control

applied. The initial values for the drive system and response

system are given as x(0) = (−2, 1, 4) and y(0) = (2,−3, 2),
respectively.

Fig. 3 Time response of the symplectic synchronization errors

Numerical results are displayed in Fig. 3 which shows the

time response of error states for the error dynamical system

(8). From Fig. 3 we can find that the errors tend to zero rapidly

and and it is also proved that the proposed method can make

the tracking errors converge to origin within the time t=1.2s,

which implies that the finite-time symplectic synchronization

of the systems (1) and (2) is indeed realized.

V. CONCLUSION

The problem of finite-time symplectic synchronization

between two different chaotic systems has been discussed

in this paper. Using Lyapunov stability theorem and the

finite-time control theory, some sufficient conditions for

finite-time symplectic synchronization of different chaotic

systems are obtained. Numerical simulations are provided to

illustrate the feasibility and effectiveness of the presented

control technique. The proposed control method may be more

valuable to be applied to the realization in engineering than

symplectic synchronization technique.
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