
A Design for Application of Mobile Agent
Technology to MicroService Architecture

Masayuki Higashino, Toshiya Kawato, Takao Kawamura

Abstract—A monolithic service is based on the N-tier architecture
in many cases. In order to divide a monolithic service into
microservices, it is necessary to redefine a model as a new
microservice by extracting and merging existing models across
layers. Refactoring a monolithic service into microservices requires
advanced technical capabilities, and it is a difficult way. This paper
proposes a design and concept to ease the migration of a monolithic
service to microservices using the mobile agent technology. Our
proposed approach, mobile agents-based design and concept, enables
to ease dividing and merging services.

Keywords—Mobile agent, microservice, web service, distributed
system.

I. INTRODUCTION

W ITH the evolution of cloud computing and web

technology, many web services have been developed

and operated which are updated frequently and continuously.

Typically, many web services are built on a multi-layered

architecture, and each layer has a monolithic architecture.

However, the internal implementation of these layers is

getting more complicated, and a wide area of rebuilds and

redeployment may be required for updating the system.

Operation of a system requiring frequent and continuous

change requires a wide area of changes to be a burden of

development and operation.

For this reason, it is necessary to localize the area of

influence on the changed software module. Against this

background, the usefulness of microservice architecture, which

constructs a system by combining software components of

microservices, is being evaluated [1].

There is currently no definition for microservices.

According to [2], a single application is developed by

combining multiple microservices. These microservices run in

their processes and often communicate with each other by a

lightweight communication protocol such as the REST API.

Also, these microservices are built on the business capabilities

and can be deployed independently by fully automated

mechanisms. Centralized management for those services is

minimal, and each service can use different programming

languages and different data storage technologies. The features

of such a microservice architecture are common to mobile

agent technology, which are autonomous software components

that can migrate among computers connected to the network,

and are thought to have high affinity with each other.

Toshiya Kawato and Takao Kawamura are with Tottori University, Tottori,
680-8550, Japan.

Masayuki Higashino is with the Tottori University, Tottori, 680-8550, Japan
(e-mail: higashino@tottori-u.ac.jp).

A mobile agent is an autonomous software module

which can migrate between different computers via computer

networks. A paradigm and a behavior of mobile agents are

designed like humans and whose society such as collaboration

and competition among people. This feature of mobile agents

is assumed to contribute to the ease of management for

microservices because microservices are hard to be managed

these life cycle and relations among them as a distributed

dynamic software module. The problem area of microservice

architecture partly overlaps with mobile agent technology.

This paper discusses an design for application of mobile

agent technology to microservice architecture and shows

requirements and design for a mobile agent framework to

manage microservices.

II. REQUIREMENTS OF ARCHITECTURE

In general, web services are not designed with microservice

architecture at the beginning of launching. Monolithic

architectures and frameworks such as Ruby on Rails,

CakePHP, etc. with high development efficiency are used early

in many web services. It is difficult to predict in advance

what feature is demanded at the time of launching the web

service, making microservice at the time when necessity does

not occur becomes a factor to raise the development cost of

the system. Basically, disassembling software into many parts

like a microservice is a trade-off between system complexity

and maintainability, so it is common to adopt a monolithic

architecture unless it is necessary. Thus, it can be said that

one of the essential problems of microservice is a realization

of easy change from monolithic architecture to microservice

architecture.

In the following sections, we discuss requirements for

simplifying changes from a monolithic architecture to

microservice architecture using the paradigm of the mobile

agent system.

A. Data Distribution

In the case of developing a web service, in recent years,

relational databases, document databases, graph databases,

key-value stores and the like are often adopted.

What is a problem when distributing these data to multiple

computers (services) is to ensure data consistency. Generally,

data stored in a logical or physically separate computer has

a lower cost of ensuring consistency because latency and

throughput of the network between computers are lower as the

data is stored. Thus, the programmers of the system examine

which data is strongly or weakly related to each other, and

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:12, No:2, 2018 

67International Scholarly and Scientific Research & Innovation 12(2) 2018 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

2,
 N

o:
2,

 2
01

8 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

08
51

7.
pd

f



adopts an approach in which the relationship between data

is weak, or those with a low frequency of association are

preferentially distributed. This approach is often adopted in

the database architecture called NoSQL [3].

It is not unusual for the structure of data to change in the

operation of the web service. In the microservice architecture,

to localize the influence area of the maintenance of the system,

an approach is taken to lower the degree of coupling between

the services and increase the degree of condensation of the

service. This is very similar to the optimization problem of the

consistency assurance level strength and cost associated with

the horizontal distribution of the database. In other words, it

is thought that it is highly compatible with the architecture

of microservices that localize the scope of influence of

maintenance related to the service by putting it in a location

that is closer to the relevant data.

Therefore, we propose to extract a data model with a strong

association strength between models as a microservice while

measuring the frequency of transactions of data generated by

multiple data models and the communications traffic of data.

In addition, by enabling the operation to easily extract the

microservice, it is thought that it becomes easy to change the

monolithic web service to the microservice architecture.

A mobile agent is a useful aspect in cases where autonomy

and transfer between computers are required. By providing a

framework consisting of a suitable programming language and

execution environment for this purpose, it is considered that

the scalability of the system that can be easily realized can be

achieved.

B. Process Distribution

To process distribution, those with less data input/output can

be distributed relatively easily. On the other hand, a computer

responsible for a large amount of data processing is strongly

related to the data consistency guarantee mentioned above,

so basically it is necessary to locate it close to the computer

where the data is stored.

Therefore, the microservice having the function of

processing data has the greatest influence on the network

distance between the microservice having the data to be

processed, the microservice as the processing result output

object, and the end user’s computers. It is required to migrate

to a microservice with low cost.

Such a requirement is a field that the mobile agent is good

at, and it seems that affinity between autonomous processing

dispersion and mobile agent is high.

C. Domain-Driven Design

When dividing an existing service into microservice, a

method of searching for a junction that can achieve both loose

couplings and high condensability in the problem domain is

used [1], [4].

However, this junction may go beyond the technical

boundary. For example, in web services, a three-layer

architecture is often adopted, but junctions that can achieve

both loose coupling in the dispersion of data and dispersion

of processing and high condensability traverse these layers

there is a possibility.

Therefore, it is difficult to adopt the existing monolithic

web application framework as it is. Many of these frameworks

clearly divide user interface functions, data processing

functions, and data storage functions into layers.

For this reason, by adopting a mobile agent, which is a

small software component capable of both data retention and

data processing, as a system platform, it is possible to realize

a junction capable of achieving both loose couplings in the

problem domain and high condensability It is thought that it

can be flexible and easily extracted as a microservice.

Thus, we propose an approach that extracting microservices

from a monolithic service and reconstructing a monolithic

service to microservices dynamically.

III. REQUIREMENTS OF FRAMEWORK

The smaller the service, the higher the cost for grasping

the specification of each service and applying it accurately.

For this reason, as compared to performing static specification

verification in advance, the importance of being able to

dynamically respond to changes in the system is increased

when the operation of each microservice is changed.

Therefore, we propose a method to dynamically extract

microservices from a monolithic service and dynamically

reconstruct them as microservices. There are two important

properties to realize this proposal.

A. Framework for Re-Construction

First, any part of a monolithic service or a microservice

can be divided as a new microservice, and it works properly

as a system. This can be realized by utilizing many existing

virtualization technologies that have been proposed. However,

the granularity of virtualization ranges from function of

programming language to virtual machine. It is considered

that mobility by mobile agent technology and correspondence

to dynamic constraint satisfaction problem can be utilized for

this.

Because relaxing restrictions on models based on business

logic that developers think when dividing as microservices,

and models based on hardware and technology being used,

we can redefine from a more flexible monolithic service to

microservice It is because our proposal intends to make the

configuration possible.

For this reason, it is not an existing web framework based

on restrictions of technical specifications such as a three-layer

architecture and a request-response type such as an HTTP,

rather than being as conscious as possible of restrictions on

technical specifications, a more flexible monolithic service A

new web framework with constraints and conventions that

make it easier to split into microservices.

B. Evalution of Cost with Re-Comstruction

The second is to be able to evaluate the cost of extracting

new microservice from a monolithic service. Even though

it is possible to divide the system, the performance of the

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:12, No:2, 2018 

68International Scholarly and Scientific Research & Innovation 12(2) 2018 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

2,
 N

o:
2,

 2
01

8 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

08
51

7.
pd

f



system depends on constraints of the underlying hardware and

software, so even if an advantage as microservices is obtained

by division, estimation of performance degradation by division

and measures to prevent irreversible division are extremely

important.

Therefore, our proposal is based on the collection and

analysis of statistical information on the inside of the service,

based on the change of the performance cost when dividing

microservices from a monolith service and the fact that it can

be merged to the original system after being divided, In other

words, it is necessary to think about a method to evaluate

reversibility.

In our future work, we will proceed with these two studies.

IV. DESIGN FOR FRAMEWORK

A. Mobile Agent

A mobile agent architecture’s specified in MASIF

Specification by OMG (Object Management Group) [5] and

Agent Management Specification by FIPA (Foundation for

Intelligent Physical Agents) [6]. In AREs (agent runtime

environment), multiple agents work concurrently and are

able to migrate between AREs via networks. An agent is

constructed from a runtime state area and an application area,

and a program code area that contains program codes [7]. A

runtime state area has information of states of the agent during

executions of tasks such as call stacks, program counters,

etc. An application area has any data that are specified by

developers of the agent. A program code area has a set of

program codes that are described behaviors of the agent.

B. Dividing and Mergeing for Processes

Fig. 1 shows a conceptual diagram of process dividing

and merging. A programmer can migrate any process to any

node. When a process is migrated, a local communication

and a remote communication is handled transparently via the

system. In general, a communication delay is greater in remote

communication than in local communication. Thus, there is a

tradeoff between redundancy due to system decentralization

and communication delay by remote communication. In

changing the construction of the system, it is important to

balance the quality of the domain and the quality of the

performance. In this our architecture, even if the process is

migrated to an arbitrary node, interprocess communication

is maintained whether it is local or remote. This makes it

easier for programmers to find boundaries that can balance

process dispersion and performance without being aware

of communication types. This property is important in the

domain-driven design, it makes easy to find for a better

domain, and the changeability of the system can be improved.

C. Dividing and Mergeing for Data

Fig. 2 shows a conceptual diagram of resource dividing

and marging. A programmer can clone arbitrary resources

by duplicating or dividing it to an arbitrary number. Our

framework is responsible for ensuring the connection with the

Fig. 1 A conceptual diagram of distributed dividing and merging of proesses

 #n

 #2

Fig. 2 A conceptual diagram of distributed dividing and merging of data
(resource)

divided resources and an ability of look-up divided resources.

Whether the divided resources take the master-slave model,

multi-master model, Paxos [8] for consensus protocol or the

like is realized by one layer above the framework. If a

programmer just want to physically divide the resources, you

can do so by dividing and merging of the process described

above section.

In this our approach, by realizing the process distribution

and the data distribution with different aspect, the programmer

can understand separately the domain design of the program

and the guarantee of consistency to the data.

V. RELATED WORKS

A. Mobile Agents and Microservices

Provalets [9] proposes a method to manage microservices

using mobile agent technology. Fluid [10] proposes a

transportable and adaptive web service model like a

mobile agent architecture. Reference [11] proposes a

Performance-based cost models for improving web service

efficiency through dynamic relocation.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:12, No:2, 2018 

69International Scholarly and Scientific Research & Innovation 12(2) 2018 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

2,
 N

o:
2,

 2
01

8 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

08
51

7.
pd

f



However, these are not has been made for processes

to extract mictoservices from a monolithic service and

reconstructing a monolithic service to microservices. Our

proposed approach is extracting microservices from a

monolithic service and reconstructing a monolithic service to

microservices.

B. Web Services Composition and Microservices

Automatic web service composition like a mobile agent

architecture, such as [12], is an active resaerch area

[13]. Self-organization and self-management of processes

including microservices too. In [14], associations of multiple

microservices are explained by using a tree graph of services’

types and graph trees of services’ instances, and proposals

are made to describe the concept of service orchestration and

load balancing for automatic management of microservices

that this work reuses much of the ideas from [15] described

them. These approaches aim to composite existing services.

C. Cloud Computing

In the area of cloud computing, researchers are underway

to adjust the physical location of virtual machines (VMs) for

the quality of service (QoS) control. Reference [16] surveys

QoS in cloud computing. Discussions related to mobile agents

and microservices in the research area of cloud computing are

focused on the migration of VMs such as [17]- [18]. In the live

migration of a VM, migration is performed with the interfaces

and various resources in VM being fragmented and active at

the same time on a plurality of computers at the same time.

This technology is probably considered to be useful as an idea

for transparently dividing a monolithic service into multiple

microservices and autonomous horizontal scaling. However,

these live migration techniques for MVs do not assume that

a VM will be divided into two or more instances during live

migration.

D. Distributed Database

Reference [19] provides efficient partitioning and allocation

of data for web service compositions. This approach

that partitions and allocates small units of data, called

micropartitions, to multiple database nodes, and improves

data access efficiency over the standard partitioning of data.

However, this approach is not premised on consistency with

units of microservices based on business requirements which

are important in microservice. However, it depends on the

three-tier architecture, and the proposal of this paper, an

extraction of microservices from a monolithic service, has not

been proposed.

Azure Cosmos DB [20] is a globally distributed database

that can choose a consistency level from strong, bounded

staleness, session, consistent prefix, or eventual and choose

a database model from collections, graphs, or tables.

On the other hand, our proposal is to easily divide

monolithic web services into microservices while

considering consistency with division units based on

business requirements. In this case, in order to localize the

scope of influence by service maintenance, it is the goal to

dynamically lower the degree of coupling between services

and to divide the service while increasing the degree of

condensation of the service.

VI. CONCLUSIONS

This paper has discussed a design and concept using the

mobile agent technology for deviding and merging between a

monolithic service and microservices.

In future work, we design and develop the framework

including programming language and its runtime platform for

reconstructing microservices from a monolithic service.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant

Number 15K15982.

REFERENCES

[1] I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen, Microservice
Architecture: Aligning Principles, Practices, and Culture. O’Reilly
Media, Inc., 2016.

[2] J. Lewis and M. Fowler. (2014) Microservices: a definition of this new
architectural term. [Online]. Available: http://martinfowler.com/articles/
microservices.html

[3] S. Edlich. (2017) Nosql databases. [Online]. Available: http://
nosql-database.org/

[4] E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley Professional, 2003.

[5] Mobile Agent System Interoperability Facilities Specification, Object
Management Group, Inc., 1997.

[6] FIPA Agent Management Specification (SC00023K), Foundation for
Intelligent Physical Agents, 2004.

[7] A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding code mobility,”
IEEE Transactions on Software Engineering, vol. 24, pp. 342–361, 1998.

[8] L. Lamport, “The part-time parliament,” ACM Transactions on Computer
Systems, vol. 16, no. 2, pp. 133–169, 1998.

[9] A. Paschke, “Provalets: Component-based mobile agents as
microservices for rule-based data access, processing and analytics,”
Business & Information Systems Engineering, vol. 58, no. 5, pp.
329–340, 2016.

[10] I. M. D. Pratistha and A. Zaslavsky, “Fluid: Supporting a transportable
and adaptive web service,” in Proceedings of the 2004 ACM Symposium
on Applied Computing, 2004, pp. 1600–1606.

[11] D. Pratistha, A. Zaslavsky, S. Cuce, and M. Dick, “Performance based
cost models for improving web service efficiency through dynamic
relocation,” in Proceedings of the 6th International Conference on
E-Commerce and Web Technologies, 2005, pp. 248–257.

[12] P. Wang, Z. Ding, C. Jiang, M. Zhou, and Y. Zheng, “Automatic
web service composition based on uncertainty execution effects,” IEEE
Transactions on Services Computing, vol. 9, no. 4, pp. 551–565, 2016.

[13] A. Immonen and D. Pakkala, “A survey of methods and approaches
for reliable dynamic service compositions,” Service Oriented Computing
and Applications, vol. 8, no. 2, pp. 129–158, 2014.

[14] G. Toffetti, S. Brunner, M. Blöchlinger, F. Dudouet, and A. Edmonds,
“An architecture for self-managing microservices,” in Proceedings of
the 1st International Workshop on Automated Incident Management in
Cloud, 2015, pp. 19–24.

[15] G. Karagiannis, A. Jamakovic, A. Edmonds, C. Parada, T. Metsch,
D. Pichon, M. Corici, S. Ruffino, A. Gomes, P. S. Crosta, and
T. M. Bohnert, “Mobile cloud networking: Virtualisation of cellular
networks,” in Proceedings of the 21st International Conference on
Telecommunications, 2014, pp. 410–415.

[16] D. Ardagna, G. Casale, M. Ciavotta, J. F. Pérez, and W. Wang,
“Quality-of-service in cloud computing: modeling techniques and their
applications,” Journal of Internet Services and Applications, vol. 5, no. 1,
pp. 1–17, 2014.

[17] B. Wei, C. Lin, and X. Kong, “Dependability modeling and analysis for
the virtual data center of cloud computing,” in 2011 IEEE International
Conference on High Performance Computing and Communications,
2011, pp. 784–789.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:12, No:2, 2018 

70International Scholarly and Scientific Research & Innovation 12(2) 2018 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

2,
 N

o:
2,

 2
01

8 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

08
51

7.
pd

f



[18] M. Melo, P. Maciel, J. Araujo, R. Matos, and C. Arajo, “Availability
study on cloud computing environments: Live migration as a
rejuvenation mechanism,” in Proceedings of the 43rd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, 2013,
pp. 1–6.

[19] A. V. Kish, “Efficient partitioning and allocation of data for workflow
compositions,” Ph.D. dissertation, University of South Carolina, 2016.

[20] Microsoft Corporation. (2017) Azure cosmos db. [Online]. Available:
https://azure.microsoft.com/en-us/services/cosmos-db/

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:12, No:2, 2018 

71International Scholarly and Scientific Research & Innovation 12(2) 2018 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

2,
 N

o:
2,

 2
01

8 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

08
51

7.
pd

f


