
 

 

 
Abstract—In this paper, we presented our innovative way of 

determining the driving context for a driving assistance system. We 
invoke the fusion of all parameters that describe the context of the 
environment, the vehicle and the driver to obtain the driving context. 
We created a training set that stores driving situation patterns and 
from which the system consults to determine the driving situation. A 
machine-learning algorithm predicts the driving situation. The 
driving situation is an input to the fission process that yields the 
action that must be implemented when the driver needs to be 
informed or assisted from the given the driving situation. The action 
may be directed towards the driver, the vehicle or both. This is an 
ongoing work whose goal is to offer an alternative driving assistance 
system for safe driving, green driving and comfortable driving. Here, 
ontologies are used for knowledge representation. 
 

Keywords—Cognitive driving, intelligent transportation system, 
multimodal system, ontology, machine learning. 

I. INTRODUCTION 

HE cognition of driving situation is essential in a driving 
assistance system. In our work, the driving situation or 

driving context is the combined contexts of the environment, 
the vehicle and the driver. The contexts of the environment, 
vehicle and the driver are themselves the combined parameters 
that indicate the state of the concerned entity. Ontology is used 
as a tool to represent knowledge, in this case the one related to 
context. Ontology is an accepted tool/standard in computing 
medialization.  

A. Knowledge Representation Using Ontology 

In computer science, ontology is a formal naming and 
definition of the types, properties, and interrelationships of 
the entities that fundamentally exist for a particular domain of 
discourse. Ontology compartmentalizes the variables needed 
for some set of computations and establishes the relationships 
between them. In the fields of artificial intelligence, semantic 
web and systems engineering ontologies are used to limit 
complexity and to organize information. The ontology can 
then be applied to problem solving [1]. There are several 
definitions or meanings attributed to this concept. The 
definitions the most common are those of [2], [3]. The first 
definition of the ontology [2] was: "the terms and the basic 
relationship with the vocabulary of a domain as well as the 
rules for combining terms and relations in order to define 
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extensions of such vocabulary". Reference [4] proposed the 
definition most cited: "an explicit specification of a 
conceptualization". Reference [3] refines the definition by 
considering ontologies as partial and formal specifications of a 
conceptualization. Ontologies are formal because they are 
expressed as formalism with formal semantics. They are 
partial because a conceptualization cannot always be fully 
formalized in such a framework. Ontologies were used in 
modeling of transport accident [5] and on assistance on search 
of data [6]. Reference [7] uses ontology in modeling an 
intelligent driver assistance system (I-DAS) for vehicle safety. 
There are four types of components to formalize knowledge 
embedded in ontology, namely: the classes, the relations, the 
axioms and the instances. 
 The classes of concepts are a set of words representing an 

abstract idea or a class of tangible objects. 
 The relation represents a type of interaction between the 

concepts of a domain. 
 The axioms are for structuring of sentences that are 

always true. 
 The instances are used to represent the elements. 

In order to design our ontology model, we use the software 
tool called Protégé [8]. We also use VOWL (Visual Notation 
for OWL) [9] as a plug-in for data visualization. All diagrams 
related to ontology that appear in this paper are data 
visualizations through VOWL. 

B. Driving Context of an Intelligent Transportation 

Our vision of an intelligent vehicle [10], [11] is shown in 
Fig. 1. An intelligent vehicle is able to sense its driving 
context, and provides comfort to its user. It is able to 
communicate with other vehicle (V2V) to navigate safe 
passage for both vehicles. It is capable of communicating with 
available infrastructure to make sense of its environment and 
services that are available. It is able to communicate with 
other entities such as V2H (vehicle to home) and other 
interconnected objects, otherwise known as the Internet of 
Things (IoT) [12].  

II. RELATED WORKS 

This work is a continuation of our previous work [13], [14]. 
In our work, the driving context is the result of the fusion of 
various parameters that describe the environment context, the 
vehicle context and the driver context. We have compared our 
definition of driving context with other related works, such as 
[15], [16]. Our work is evolving; we wish to consider 
implementing the following changes. We intend to add the 
relation between the entities as introduced in [17] to add a 
range of action for a more comfortable driving. We will 
configure communication and V2I, introduced in [18], as a 
global context vision instead of agent-centric one. It is a good 
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idea to consider the case of not strictly following traffic rules 
when a situation demands for it, as in [19]. Finally in [19], the 

concept of “values” may be warranted to add into our context 
rules for comfort, green and secured driving. 
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Fig. 1 The intelligent vehicle of tomorrow. 
 

III. THE DRIVING MODEL 

The driving model [20], [21] is the representation of driving 
situations and the rules of driving. A driving model is 
important because through it that we will be able to analyze 
the driving event and the kind of driving assistance that is 
appropriate for such event. We will represent the driving 
model using ontology. 

A. The Driving Context 

For the driving context [22], we are concerned about the 
fusion of three main contexts: that of the vehicle, the driver 
and the environment. The “Environment” is the ontology class 
that describes the external environment where the human-
vehicle interaction exists. The “Vehicle” is the class that 
represents a vehicle used to interact with its driver while the 
“Driver” is the class describing the driver of a vehicle. See 
Fig. 2. 

 

Vehicle hasDriver
(functional)

Environment

Driver

hasVehicle

 

Fig. 2 Ontology for the driving context 

B. The Context of the Driver 

The ontological context of the driver is shown in Fig. 3. As 
shown, the “Driver” class is related to other classes, which 
describe the state of the driver: 
 MentalState: the current mental state of the driver. The 

class has the following subclasses: “Anger”, “Stress”, 
“Fatigue” and “Faint”. 

 DriverProfile: this class contains pertinent attributes: 
Name, LicenseScore, DriverLicenseNumber, Age, etc. 

 DriverViolations: this class contains the historical driving 
information. It has subclasses, such as 
“RedLightViolation”, “OverSpeeding”, etc. 

 FocusOnDriving: a class that contains many Boolean 
attributes, including “hasEyesOnTheRoad”, 
“hasPhoneConversation”, “hasPassengerOnBoard”, 
“hasHandsOnTheSteeringWheel”, etc. 

C. The Context of the Vehicle 

The ontological context of the vehicle is shown in Fig. 4. 
The class “Vehicle” is a subclass of “MovingObject” which is 
a class that describes all moving entities on the road, including 
pedestrians, cyclists, and other vehicles. A “Vehicle” has 
subclasses, namely “Truck/Bus”, “Car”, and “MotorBike”. 
The “Vehicle” can be described through its relationships with 
various other classes, given below:  
 TechnicalData: this class describes the technical data of 

our referenced vehicle. Its subclasses are “FuelType”, 
“EmissionClass” and “TractionType”. 

 Cockpit: a class that contains the status of all elements 
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that are found in a vehicle’s cockpit. For example, 
‘hasWindowsOpen’ is a data property that has a Boolean 
value.  

 ComponentsStatus: this contains as subclasses all 
components that we have to check to guarantee a good 
driving experience. Among these subclasses are 
“DirectionIndicator” (with values ‘NoIndicator’, 
‘RightIndicator’, ‘LeftIndicator’, and 
‘DoubleIndicators’), “TyresPression”, 
“LubricantTemperature”, “EngineLubricantLevel” (with 

values ‘LowLevel’, ‘HalfLevel’ and ‘FullLevel’), and 
“FuelQuantity”. The class has also some Boolean 
properties to check if some components are active or not. 
Example is ‘hasFogLightsOn’. 

 hasPossibleCollision: this is a property that associates our 
vehicle with the class “MovingObjects” 

 hasPhysics: this property links our vehicle with class 
“Physics” which describes our vehicle with attributes, 
such as speed and acceleration. 

 

 

Fig. 3 The ontological representation of the driver’s context 
 

D. The Context of the Environment 

As shown in Fig. 5, the Environment [23]-[25] is related to 
all the elements that belong to the scene where the driving 
event takes place. The “Environment” is an abstract class and 
general concept made up of cities where vehicles are present. 
The class Environment is related to other classes given below: 
 City: In our work, an Environment is an area where we 

can find many cities. A city has two data properties, 
namely ‘hasCityName’ and ‘hasLimitedTrafficZone’ 
which is a Boolean value indicating if the city can be 
accessed only during some intervals of the day.  

 DistrictArea: it contains as objects the different districts 
of a city, linked through ‘hasDistrictArea’ property. The 
position of the “Driver” is stored in the “PositionArea”, a 
subclass of “Physics” and equivalent to “DistrictArea”. 

 Road: a road has many data properties, such as 

‘hasMinSpeedLimit’, ‘hasMaxSpeedLimit’, 
‘hasNumberOfLanes’, ‘hasContinuousLine’ and 
‘hasLength’. A road is made up of three subclasses, as 
follows: (1) ‘Urban’, (2) ‘ExtraUrban’, and (3) 
‘Highway’. The Road is related to the class RoadSegment 
via property hasRoadSegment. A RoadSegment has three 
subclasses: Lane, Intersection, and RoundAbout. They 
describe the kind of road segments that we find in real 
life. 

 RoadProperty: it further describes the “Road”. Its 
subclasses include “Visibility” (values are ‘Low’, 
‘Average’ or ‘High’), “Weather” (values are ‘Fog’, ‘Sun’, 
‘Rain’ and ‘Snow’), “AccidentHistory” (values are 
‘Unusual’ or ‘Frequent’), “TrafficCongestionHistory” 
(values are ‘Low’, ‘Average’ or ‘Intense’) and 
“CurrentTrafficCongestion” (values are ‘Low’, ‘Average’ 
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or ‘Intense’). 
 

 

Fig. 4 The ontological representation of the context of the vehicle 
 

 

Fig. 5 The ontological representation of the context of the environment 
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E. Physical Parameters and Trajectory 

In this work, all physical parameters that are useful in our 
ontology are made of subclasses of the general class 
“Physics”, which is a class that groups all physical properties 
that an object can have. The “Trajectory” class describes the 
trajectory of our moving vehicle. A trajectory has start time 
and has a starting position. Every object is connected with its 
corresponding “Physics” individual via ‘hasPhysics’ property. 
Hence, an object can have multiple properties, such as: 
 Speed: this class contains six possible individuals, namely 

‘NoSpeed’, ‘ExtraSlowSpeed’, ‘LowSpeed’, 
‘NormalSpeed’, ‘HighSpeed’ and ‘OverSpeed’. The 
object’s speed is compared with the road’s limit to arrive 
at this value.  

 Acceleration: this class has five possible values, as 
follows: ‘NoAcceleration’, ‘LowDeceleration’, 
‘LowAcceleration’, ‘StrongDeceleration’ and 
‘StrongAcceleration’. 

 Weight: the weight of an object is classified as follows: 
‘Flyweight’, ‘Lightweight’, ‘Middleweight’, 
‘Heavyweight’ and ‘SuperHeavyweight’. 

IV. CASE SCENARIO AND SIGNAL PROCESSING 

Let us consider a case scenario which will be the basis for 
the demonstration of the various concepts involved.  

A. Case Scenario 

Our sample case scenario is shown in Fig. 6, which shows 
we have to drive our vehicle in the driving loop. As can be 
seen, we will encounter rain and fog as we drive, as well as a 
moving vehicle and static vehicle (a road obstacle) and some 
pedestrians crossing the street. In two intersections, there are 
stop signs; lanes for different directions are also shown as well 
as speed limits to be respected. Here, the safe driving conduct 
will be tested. A deviation to this will merit the invocation of 
an assistance mechanism for the driver to drive safely and 
activation of some signals for the vehicle. A video of this 
scenario is available online in YouTube website [26]. 

B. Driving Simulation 

Our driving assistance system concept needs to be tested in 
the laboratory first before it is tested on the actual roads. To 
this end, we created our own driving simulator using the 
software Unity 3D [27]. As shown in Fig. 7, we designed our 
3D driving scenario using Unity and the functionalities 
associated with some moving entities (i.e. vehicle, 
pedestrians) are implemented using C# programming. As 
shown, the driving scenario is displayed through three screens 
positioned next to each other. The driving experience 
somehow mimics that of the vehicle cockpit. We also bought 
steering wheels and brake and acceleration pedals for a 
maximum imitation experience of driving a vehicle. We also 
incorporate activation of direction signal indicator (i.e. turn 
right, turn left) and such an indicator is displayed on the 

screen. Indeed, using this set-up, we are able to drive as if we 
are driving a real vehicle albeit on a limited scale (the basic 
driving events: going forward, backward, turn left, turn right, 
stop, etc.). 
 

 

Fig. 6 Sample case scenario 

C. Simulation Data 

The identification of a driving event necessitates primarily 
the collection of various signals coming from the driver, the 
vehicle and the environment. These signals are then 
interpreted accordingly. In our work, we collect the following 
sample representative data from our driving simulator. See 
Table I. 

D. Simulation Data and the Instantiation of Ontology 

The various parameters obtained from the driving 
simulation are used to instantiate our ontology. We then use a 
reasoner to check the consistency of the ontology and classify 
all pour instances. A reasoner is a tool that infers logical 
consequences from a set of asserted facts. For example, in our 
simulation snapshot, we create an instance V of class Car. In 
our ontology, we defined class Car as child of class Vehicle. A 
Car is a vehicle, thus V is also a Vehicle. Some reasoner can 
also apply SWRL rules [28], [29]; this is the case of the Pellet 
Reasoner [30]. We created a Java program that connects to the 
Unity 3D driving simulator. We then obtain the csv (comma-
separated values) file from the simulation. We match the 
ontology file with .csv file to instantiate classes, attributes and 
properties. We then classify and reason using instantiated 
ontology. The instantiated ontology is saved as a new OWL 
file [31]. To demonstrate how it all works, consider the turn 
right in the intersection event with rainy weather (see Fig. 8). 
The diagram is deceiving but it is actually three screen shots 
of the event, put side-by-side and the final image is cropped 
on the right and the left sides. We can see that a signal 
indicator is activated (i.e. green arrow pointing to the right on 
the screen). The angle made in turning to the right is 25 
degrees while the speed is quite slow, at 14.56 km/h. 
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Fig. 7 Our driving simulator 
 

TABLE I 
SIMULATION DATA 

Data name Values Description 

Image PNG file The screenshot of the situation, used to label the data 

Look orientation “front”, “left”, “right”, “behind” Current direction the driver is looking. 

Steering angle Float, between 1 and -1 
Current steering wheel angle, -1 is maximum to the left, 1 is maximum to the right, 0 is 

neutral 
Throttle Float between 0 and 1 Throttle force put on the acceleration pedal, 0 is none, 1 is maximum 

Brake Float between 0 and 1 Brake force put on the braking pedal, 0 is none, 1 is maximum 

Speed Km/h Speed of the vehicle 

Absolute position 
Coordinate on the map formatted as 

“(X, Y, Z)” with Y being altitude 
Position of the vehicle on the map 

Orientation “North”, “South”, “East”, “West” Current orientation of the vehicle 

Previous Orientation “North”, “South”, “East”, “West” Previous orientation of the vehicle 

Going to “North”, “South”, “East”, “West” Orientation needed to travel to the next road segment 

Size Positive float value Size of the vehicle in meters 

Weight Positive float value Weight of the vehicle in kg 

Speed limit km/h Speed limit of the road 

Blinker (Direction) state True or False State of each blinker, true is on and false is off 

Number of lanes 0 or positive value Number of lanes on the current road, 0 if not on the road 

Continuous line True , False or nothing 
Indicates if the line separating the lanes is continuous or not. No value if we are not on 

the road 
Current lane ID -1 or positive value ID of the current road segment, -1 if none 

Next lane -1 or positive value 
ID of the next road segment which is not an intersection, or -1 if none (if we are out of 

the road for example) 
Position on lane -1, 0 or 1 Current lane we are on. 1 is right lane, -1 is left lane and 0 is not on the road 

RoadObject JSON Road objects such as stop sign, pedestrian and other vehicle that our vehicle is aware of. 

RoadMap JSON Road map that contain all the road, lane, intersection, and the connection between them. 
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The values obtained from the simulator as the driver 
performs the turn right event are depicted in Fig. 9. As shown, 
the class Car is now instantiated with an individual 
(My_vehicle). The various attributes of the Car in relation to 
ComponentStatus, hasPhysics, hasDriver, isGoingDirection, 
hasTechnicalData, hasDistanceToNextRoadSegment, etc., 
properties are also shown. For example, for the hasPhysics 
property, we can see that the sub-properties have instantiated 
values as follows: hasLatitude: 64.4, hasLongitude: -46.5, 
speed: low, acceleration: low, weight of the vehicle: middle 
weight, size of the vehicle: medium, and the date of simulation: 
2017-07-04.  

The real context of the driver during simulation is specified 
as follows: driver: myself, is drunk: false, has blood pressure: 
10, name: Clement, age: 23, is young driver: false, etc. The 

driver’s focus on driving is specified as: focus on driving: 
focus, is looking behind: false, is looking to the left: false, etc.  

Likewise, the instantiated ontology for the turn right driving 
event is shown in Fig. 10. As shown, the individual 
My_vehicle is the instance of class Vehicle. This vehicle is 
linked to the instances of various classes: Driver 
(Myself_driver), Environment (My_environment), Cockpit 
(My_cockpit). It also shows the data property assertions of 
various attributes of various individuals of various classes. 
Fig. 11 (a) shows the structure of the roads and their 
relationship with one another. Fig. 11 (b) shows the 
individuals in the Protégé tool, depicting the actual 
relationship of the vehicle and the environment and that of the 
city and the roads within the environment. 

 

 

Fig. 8 Turn right driving event on a rainy weather condition 
 

Indeed, we can see smallest details of the vehicle in the 
ontological representation. Also, it is worth noting that the last 
two directions of the vehicles are shown in the ontology: 
Direction_North and Direction_East. This is in fact a 
confirmation that prior to turning right (Direction_East) in the 
intersection, the vehicle was heading to the intersection 
(Direction_North). 

E. Decision Tree Driving Event Classification 

Machine learning algorithms [15], [32]-[36] discover 
patterns and predict an output from a formatted input after 
training the algorithm on a sufficiently big set of training data. 
In our case, the number of possible situations, their variations, 
and the scale of the data used make this problem appropriate 
for machine learning. Our problem is a classification problem 
because we want to be able to give untagged data to our 

algorithm and get the tag corresponding to the situation. 
Decision tree learning [37] uses a decision tree as a 

predictive model. A decision tree is a flowchart-like structure 
in which each internal node represents a “test” on an attribute, 
each branch represents the outcome of the test and each leaf 
represents a class label for the classification tree. A tree can be 
created by splitting the training set into subset based on an 
attribute value test and repeating the process until each leaf of 
the tree contains a single class label or we reach the desired 
maximum depth. One of advantages of decision tree is that it 
uses a white-box model. The results given by the model are 
explained by Boolean logic and are easy to understand, as we 
can see on the Fig. 12. Here, we can easily see the most 
important features, i.e. the one that splits the tree in the most 
meaningful way to separate efficiently all the classes. 
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We used the machine learning algorithms from the scikit-
learn library. We choose decision tree and k-nearest-neighbor 
algorithms because of their speed and simplicity, the 
possibility of data analysis after learning and because they are 
the algorithms that gave the best results. We obtained results 
of 96.18% of precision for the decision tree algorithm on our 
test set and 92.65% with the k-nearest neighbor. Tables II and 
III show the confusion matrix of each the algorithms. The 
results indicate a good accuracy although the number of 
samples is low. For improved results, we need more data with 
many different variables.  

 

  

Fig. 9 A driving event produces values that are used to instantiate the 
ontology template 

 
TABLE II 

CONFUSION MATRIX OF DECISION TREE 

 
Detected 
Normal 

Detected 
Stop 

Detected 
Turn left 

Detected 
Turn right 

Is Normal 226 5 1 2 

Is Stop 1 52 0 0 

Is Turn left 2 0 25 1 

Is Turn right 1 0 0 24 

 
 

TABLE III 
CONFUSION MATRIX OF NEAREST NEIGHBOR 

 
Detected 
Normal 

Detected 
Stop 

Detected 
Turn left 

Detected 
Turn right 

Is Normal 228 1 3 2 

Is Stop 1 51 1 0 

Is Turn left 6 1 16 5 

Is Turn right 4 1 0 20 

A. Validating Connection between Simulation and Machine 
Learning 

To connect the simulation to the model, we use the TCP 
protocol. A python server is created and waits for a connection 
from the simulator. Once the simulation is connected, the 
server waits for an input from the simulation. The simulation 
sends data of the current driving event, .csv formatted. The 
server then processes the data received, and then use them 
with the model it saved to predict which driving event 
corresponds to the sampled data. After predicting the result, 
the server displays messages (see Fig. 13) and sends back the 
current situation to the simulator in order to implement the 
necessary action that corresponds to the situation. Related 
message/s intended for driver is then displayed on the screen. 

Fig. 14 shows two representative sample messages intended 
for the driver based on the given driving event. Fig. 14 (a) 
shows an over speeding message (i.e. the driver’s speed is 
68.07 km/h while the road’s speed limit is 50 km/h). Fig. 14 
(b) shows a message informing the driver to stay on the lane.  

V. CONCLUSION 

In this paper, we have modeled the driving context using 
ontological approach. Our goal is to determine driving context 
as it happens, classify it and provide assistance in situations 
where driver needs to be informed or alerted. This phase of 
our work is the preliminary phase where simple and common 
driving events are taken into account. We will proceed next to 
more complex driving events in the next phase of the project. 
Our ultimate aim is to assist drivers towards safe driving, 
green driving and comfortable driving. The level of assistance 
is of three types: notification, alert and action towards the 
vehicle. This is an ongoing work and it will evolve further in 
the days ahead. Future works include the reinforcement 
learning to incorporate safe, green and comfortable driving 
features for every driving event, the cognitive user interface 
design [38], [39] and the cognitive component [40], [41] that 
allows our system to learn new driving situation, reason with 
purpose and interact with humans naturally. It will learn from 
its interaction with the system users and from its experiences 
with its environment.  
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Legend:

 

Fig. 10 The instantiated ontological representation of the context of the vehicle for the turn right driving event 
 

(a) (b)
 

Fig. 11 (a) The ontological representation of road segments. (b) The individuals of various classes (vehicle, and individuals for various 
environment classes) for the simulated turn right driving event 
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Fig. 12 Classification tree example 
 

 

Fig. 13 The server detecting situations 
 

(a) (b)  

Fig. 14 (a) Driving assistance message for over speeding (b) Driving assistance message reminding driver to stay on the lane 
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