**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**30855

##### Optimization Approach to Estimate Hammerstein–Wiener Nonlinear Blocks in Presence of Noise and Disturbance

**Authors:**
Leili Esmaeilani,
Jafar Ghaisari,
Mohsen Ahmadian

**Abstract:**

**Keywords:**
Optimization,
Identification,
Quantization,
Hammerstein-Wiener

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1314875

**References:**

[1] F. Giri and E.-W. Bai, "Block-oriented Nonlinear System Identification," London: Springer-Verlag, 2010.

[2] M. Hong and S. Cheng, "Hammerstein–Wiener Model Predictive Control of Continuous Stirred Tank Reactor," Electronics and Signal Processing, ed: Springer, 2011, pp. 235-242.

[3] T. Patikirikorala, L. Wang, A. Colman, and J. Han, "Hammerstein–Wiener nonlinear model based predictive control for relative QoS performance and resource management of software systems," Control Engineering Practice, vol. 20, pp. 49-61, 2012.

[4] J. C. Gómez, A. Jutan, and E. Baeyens. "Wiener model identification and predictive control of a pH neutralisation process," IEE Proceedings Control Theory and Applications 151(3), 329-338, 2004.

[5] A. Nemati and M. Faieghi, "The Performance Comparison of ANFIS and Hammerstein–Wiener Models for BLDC Motors," Electronics and Signal Processing, ed: Springer, 2011, pp. 29-37.

[6] K. Elleuch and A. Chaari, "Modeling and identification of hammerstein system by using triangular basis functions," International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, vol. 1, p. 1, 2011.

[7] F. Lindsten, T. B. Schön, and M. I. Jordan, "Bayesian semiparametric Wiener system identification," Automatica, vol. 49, pp. 2053-2063, 2013.

[8] E.W. Bai, "An optimal two-stage identification algorithm for Hammerstein–Wiener nonlinear systems," Automatica, vol. 34, pp. 333-338, 1998.

[9] E.W. Bai, "A blind approach to the Hammerstein–Wiener model identification," Automatica, vol. 38, pp. 967-979, 2002.

[10] Y. Zhu, "Estimation of an N–L–N Hammerstein–Wiener model," Automatica, vol. 38, pp. 1607-1614, 9// 2002.

[11] P. Crama and J. Schoukens, "Hammerstein–Wiener system estimator initialization," Automatica, vol. 40, pp. 1543-1550, 2004.

[12] B. Ni, M. Gilson, and H. Garnier, "Refined instrumental variable method for Hammerstein–Wiener continuous-time model identification," IET Control Theory & Applications, vol. 7, pp. 1276-1286, 2013.

[13] A. Wills, T. B. Schön, L. Ljung, and B. Ninness, "Identification of Hammerstein–Wiener models," Automatica, vol. 49, pp. 70-81, 2013.

[14] G. Golub and W. Kahan, "Calculating the singular values and pseudo-inverse of a matrix," Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical Analysis, vol. 2, pp. 205-224, 1965.

[15] R. Bouldin, "The pseudo-inverse of a product," SIAM Journal on Applied Mathematics, vol. 24, pp. 489-495, 1973.

[16] P. E. Gill, W. Murray, and M. H. Wright, "Practical optimization," New York: Academic Press, 1981.

[17] T. F. Coleman and Y. Li, "A reflective Newton method for minimizing a quadratic function subject to bounds on some of the variables," SIAM Journal on Optimization, vol. 6, pp. 1040-1058, 1996.