A Review on Electrical Behavior of Different Substrates, Electrodes and Membranes in Microbial Fuel Cell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
A Review on Electrical Behavior of Different Substrates, Electrodes and Membranes in Microbial Fuel Cell

Authors: Bharat Mishra, Sanjay Kumar Awasthi, Raj Kumar Rajak

Abstract:

The devices, which convert the energy in the form of electricity from organic matters, are called microbial fuel cell (MFC). Recently, MFCs have been given a lot of attention due to their mild operating conditions, and various types of biodegradable substrates have been used in the form of fuel. Traditional MFCs were included in anode and cathode chambers, but there are single chamber MFCs. Microorganisms actively catabolize substrate, and bioelectricities are produced. In the field of power generation from non-conventional sources, apart from the benefits of this technique, it is still facing practical constraints such as low potential and power. In this study, most suitable, natural, low cost MFCs components are electrodes (anode and cathode), organic substrates, membranes and its design is selected on the basis of maximum potential (voltage) as an electrical parameter, which indicates a vital role of affecting factor in MFC for sustainable power production.

Keywords: Substrates, electrodes, membranes, microbial fuel cells, voltage.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1132290

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378

References:


[1] S. Kumar, H. D. Kumar, G. K. Babu, A study on the electricity generation from the cow dung using microbial fuel cell, J. Biochem. Tech. 3(4) (2012) 442–447.
[2] M. Azizu, Moqsud, K. Omine, Bio-electricity generation by using organic waste in banglades, Proc. of Int. Conf. on Environ. Aspects of Bangladesh. (2010) 122–124.
[3] M. Rahimnejad, M. Ghasemi, G. Najafpour, A. Ghoreyshi, G. Bakeri, S. K. H. Nejad, F. Talebnia, Acetone removal and bioelectricity generation in dual chamber microbial fuel cell, American J. of Biochemistry and Biotechnol. 8(4) (2012) 304–310.
[4] S. V. Mohan, G. Mohanakrishna, B. P. Reddy, R. Saravanan, P. N. Sarma, Bioelectricity generation from chemical wastewater treatment in mediator less (anode) microbial fuel cell (MFC) using selectively enriched hydrogen producing mixed culture under acidophilic microenvironment, Biochem. Eng. J. 39(2008) 121–130.
[5] C. H. Ko, Y. H. Chiu, C. W. Lin, Y. C. Hsieh, F. J. Chu, C. H. Wu, Microbial Community variation and electricity generation in microbial fuel cell, The Asian Conf. on Sustainability, Energy and the Environ. (2011) 2–5.
[6] B. E. Logan, B. Hamelers, R. Rozendal, U. Schroder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey, Microbial fuel cells: Methodology and technology, Environ. Sci. and Technol. 40(17) (2006)5181–5192.
[7] S. V. Khedkar, H. J. Gajbhiye, Studies in energy generation from cow dung in microbial fuel cell, Int. J. of Pure and Appl. Res. in Eng. & Technol. 4(8) (2016)343–351.
[8] A. R. Schoen, Carbon fiber electrode as an electron acceptor for a microbial fuel cell using geobacter, Mcpherson College Division of Sci. and Technol.15 (2007) 24–26.
[9] Z. Li, X. Zhang, Y. Zeng, L. Lei, Electricity production by an overflow-type wetted microbial fuel cell. Biores. Technol. 100(2009), 2551–2555.
[10] D. Pant, G. V. Bogaert, L. Diels, K. Vanbroekhoven, A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production, Bioresource Technol. 101(2010) 1533–1543.
[11] S. Kim, K. J. Chae, M. J. Choi, W. Verstraete, Microbial fuel cells: Recent advances, Bacterial communities and application beyond electricity generation, Environ. Eng. Res. 13(2) (2008) 51–65.
[12] A. D. Juan, Microbial Fuel Cell - Literature review. Technical evaluation of the microbial fuel cell technology in wastewater applications, Res. Gate. (2014) 1–18.
[13] Microbial fuel cell – for conversion of chemical energy to electrical energy. Data Research Analyst. World of chemical, KimberliteSoftwares Pvt. Ltd., India. Accessed on June 26, (2017) at 17:55, https://www.worldofchemicals.com/27/chemistry-articles/microbial-fuel-cell-for-conversion-of-chemical-energy-to-electrical-energy.html.
[14] H. Liu, S. Cheng, B. E. Logan, Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell, Environ. Sci. Technol. 39(2) (2005) 658–662.
[15] S. Cheng, H. Liu, B. E. Logan, Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells, Environ. Sci. Technol. 40(1) (2006) 364–369.
[16] M. Zhou, M. Chi, J. Luo, H. He, T. Jin, An overview of electrode materials in microbial fuel cells, J. of Power Sources. 196 (2011) 4427–4435.
[17] A. Parkash, Microbial Fuel Cells: A Source of Bioenergy, J. of Microbial & Biochemical Technol. 8(3) (2016) 247–255.
[18] D. Pant, A. Singh, G. V. Bogaert, Y. A. Gallego, L. Diels, K. Vanbroekhoven, An introduction to the life cycle assessment (LCA) of bioelectrochemical systems (BES) for sustainable energy and product generation: Relevance and key aspects, Renewable and Sustainable Energy Reviews.15(2) (2011) 1305–1313.
[19] M. A. Govind, Review on carbon electrodes in microbial fuel cell, Int.Res. J. of Eng. and Technol. 2(8) (2015) 424–427.
[20] S. K. Chaudhuri, D. R. Lovley, Electricity generation by direct oxidation of glucose in mediator less microbial fuel cells, Nat. Biotechnol.21(10) (2003) 1229–1232.
[21] J. Wei, P. Liang, X. Huang, Recent progress in electrodes for microbial fuel cells, Bioresource Technol. 102 (2011) 9335–9344.
[22] Mustakeem, Electrode materials for microbial fuel cells: nanomaterial approach, Mater Renew Sustain Energy.4(22) (2015) 1–11.
[23] H. Wang J. D. Park, Z. J. Ren, Practical energy harvesting for microbial fuel cells: a review. Environ. Sci. Technol. (2015) 49(6) 3267–3277].
[24] J. Winfield, L. D. Chambers, J. Rossiter, I. Ieropoulos, Comparing the short and long-term stability of biodegradable, ceramic and cation exchange membranes in microbial fuel cells. Bioresour. Technol. 148(2013) 480–486.
[25] B. H. Kim, I. S. Chang, G. M. Gadd Challenges in microbial fuel cell development and operation. Appl. Microbiol Biotechnol. (2007) 76(3) 485–494.
[26] Z. Du, H. Li, T. Gu, A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy Biotech. Adv. 25(2007) 464–482.
[27] W. W. Li, G. P. Sheng, X. W. Liu, H. Q. Yu, Recent advances in the separators for microbial fuel cells. Bioresour. Technol. 102(1) (2011) 244–252.
[28] R. A. Rozendal, H. V. M. Hamelers, G. J. W. Euverink, S. J. Metz, C. J. N. Buisman, Principle and perspectives of hydrogen production through biocatalyzed electrolysis, Int. J. Hydrogen Energy. 31(12) (2006) 1632–1640.
[29] V. Yousefi, D. Mohebbi-Kalhori, A. Samimi, M. Salari, Effect of separator electrode assembly (SEA) design and mode of operation on the performance of continuous tubular microbial fuel cells (MFCs). Int. J. Hydrogen Energy. 41(1) (2015) 597–606
[30] V. Yousefi, D. Mohebbi-Kalhori, A. Samimi, Ceramic-based microbial fuel cells (MFCs):A review, Int. J. of Hydrogen Energy.42(3) (2017) 1672–1690.
[31] D. A. Jadhav, S. C. Jain, M. M. Ghangrekar, Cow's urine as a yellow gold for bioelectricity generation in low cost clayware microbial fuel cell, Energy.113 (2016) 76–84.
[32] J. Winfield, I. Gajda, J. Greenman, I. Ieropoulos, A review into the use of ceramics in microbial fuel cells, Bioresource Technol.215 (2016) 296–303.
[33] A. D. Prabhu, A. D. Pathak, Critical Review on Generation of Electricity from Waste by Microbial Fuel Cell Technology, Int. J. of Sci. and Res., Nat. Conf. in Appl. Sci. and Humanities. (2017) 31–37.
[34] Mediator vs. Mediator-less Microbial Fuel Cell accessed on date- 23/08/2017, time-2:00 AM, http://www.doityourself.com/stry/mediator-vs-mediatorless-microbial-fuel-cell.
[35] P. D. Javalkar, J. Alam, Comparative Study on Sustainable Bioelectricity Generation from Microbial Fuel Cell Using Bio-waste as Fuel, Int. J. of Scientific and Res. Publications.3(8) (2013) 1–6
[36] S. Sevda, T. R. Sreekrishnan, Effect of salt concentration and mediators in salt bridge microbial fuel cell for electricity generation from synthetic wastewater, J. of Environ. Sci. and Health. 47(6) (2012), 878–886.
[37] I. A. Ieropoulos, J. Greenman, C. Melhuish, J. Hart, Comparative study of three types of microbial fuel cell, Enzyme Microb. Tech. 37(2) (2005) 238–245.
[38] B. Min, S. Cheng, B. E. Logan, Electricity generation using membrane and salt bridge microbial fuel cells, Water Res. 39(9) (2005) 1675–1686.
[39] H. Vignesh, H. K. Rani, Generation of Bioelectricity from Waste water and Cow’s urine, Indian J. of Appl. Res. 1(7) (2012) 16–19.
[40] V. D. Patil, D. B. Patil, M. B. Deshmukh, S. H. Pawa, Comparative study of bioelectricity generation along with the treatment of different sources of wastewater, Int. J. of Chemical Sci. and Appl.2(2) (2011) 162–168.
[41] R. Y. Tamakloe, T. O. Donkor, M. Donkor, H. Agamasu, Comparative study of double chamber microbial fuel cells (DC-MFCs) using mfensi clay as ion-exchange-partition: effect of pot size, Int. j. of technical res. and appl. 3(2) (2015) 126–128.
[42] A. Parkash, Characterization of Generated Voltage, Current, Power and Power Density from Cow Dung Using Double Chambered Microbial Fuel Cell, J. of Physical Chemistry and Biophysics. 6(2) (2016) 1–5.
[43] P. Thatoi, Characterization of generated voltage, current, power and power density from cow dung using double chamber microbial fuel cell. Dept. of Biotechnol. and Medical Eng. Nat. Inst. of Technol. Rourkela – 769008. (2014) 1–52.
[44] S. Oh, B. E. Logan, Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies, Water research.39 (2005) 4673–4682.
[45] S. Sreedharan, R. Pawels, Microbial fuel cell (MFC) technology for household waste reduction and bioenergy production, Civil Eng. and Urban Planning: An Int. J.3(2) (2016) 119–126.
[46] Y. Zhang, B. Min, L. Huang, I. Angelidaki, Generation of electricity and analysis of microbial communities in wheat straw biomass-powered microbial fuel cells, Appl. and Environ. Microbiol. 75(11) (2009) 3389–3395.
[47] Y. Luo, G. Liu, R. Zhang, C. Zhang, Power generation from furfural using the microbial fuel cell, J. of Power Sources. 195 (2010) 190–194.
[48] D. F. Call, B. E. Logan, A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells, Biosensors and Bioelectro. 26 (2011) 4526–4531.
[49] J. Jiang, Q. Zhao, J. Zhang, G. Zhang, D. J. Lee, Electricity generation from bio-treatment of sewage sludge with microbial fuel cell, Bioresource Technol.100 (2009) 5808–5812.
[50] M. Behera, M. M. Ghangrekar, Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH, Bioresource Technol.100 (2009) 5114–5121,
[51] Z. Naureen, Z. A. R. A. Matani, M. N. A. Jabri, S. K. A. Housni, S. A. Gilani, F. Mabood, S. Farooq, J. Hussain, A.A. Harrasi, Generation of electricity by electrogenic bacteria in a microbial fuel cell powered by waste water, Ad. in Biosci. and Biotechnol. 7 (2016) 329–335.
[52] H. Luo, G. Liu, R. Zhang, S. Jin, Phenol degradation in microbial fuel cells, Chemical Eng. J.147 (2009) 259–264.
[53] S. V. Mohan, R. Saravanan, S. V. Raghavulu, G. Mohanakrishna, P. N. Sarma, Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: Effect of catholyte, Bioresource Technol.99 (2008) 596–603.
[54] B. Logan, S. Cheng, V. Watson, G. Estadt, Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells, Environ. Sci. Technol. 41(7) (2007)3341–3346.
[55] N. Lua, S. G. Zhou, L. Zhuang, J. T. Zhanga, J. R. Ni, Electricity generation from starch processing wastewater using microbial fuel cell technology, Biochemical Eng. J. 43 (2009) 246–251.
[56] S. Cheng, B. Dempsey, B. E. Logan, Electricity generation from synthetic acid-mine drainage (AMD) water using fuel cell technologies, Environ. Sci. Technol. 41 (2007) 8149–8153.
[57] J. R. Kim, S. H. Jung, J. M. Regan, B. E. Logan, Electricity generation and microbial community analysis of alcohol powered microbial fuel cells, Bioresource Technol. 98 (2007) 2568–2577.
[58] Z. Ren, L. M. Steinberg, J. M. Regan, Electricity production and microbial biofilm characterization in cellulose-fed microbial fuel cells, Water Sci. and Technol.58(3) (2008) 617–622.
[59] S. H. A. Hassana, Y. S. Kim, S. E. Oh, Power generation from cellulose using mixed and pure cultures of cellulose-degrading bacteria in a microbial fuel cell, Enzyme and Microbial Technol. 51 (2012) 269–273.
[60] M. Rahimnejad, A. A. Ghoreyshi, G. Najafpour, T. Jafary, Power generation from organic substrate in batch and continuous flow microbial fuel cell operations, Applied Energy. 88 (2011) 3999–4004.
[61] T. Catal, K. Li, H. Bermekc, H. Liu, Electricity production from twelve monosaccharides using microbial fuel cells, J. of Power Sources.175 (2008) 196–200.
[62] B. Min, I. Angelidaki, Innovative microbial fuel cell for electricity production from anaerobic reactors, J. of Power Sources. 180 (2008) 641–647.
[63] L. Huang, B. E. Logan, Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell, Appl. Microbiol. Biotechnol. 80 (2008) 349–355.
[64] P. D. Kiely, R. Cusick, D. F. Call, P. A. Selembo, J. M. Regan, B. E. Logan, Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters, Bioresource Technol. 102 (2011) 388–394.
[65] S. R. Mise, S. Saware, Electricity Generation Using Textile Wastewater by Single Chambered Microbial Fuel Cell, Int. Res. J. of Eng. and Technol. 3(2) (2016) 710–716.
[66] S. You, Q. Zhaoa, J. Zhang, H. Liu, J. Jiang, S. Zhaoc, Increased sustainable electricity generation in up-flow air-cathode microbial fuel cells, Biosensors and Bioelectro.23 (2008) 1157–1160.
[67] T. Catala, S. Xua, K. Li, H. Bermek, H. Liu, Electricity generation from polyalcohols in single-chamber microbial fuel cells, Biosensors and Bioelectro. 24 (2008) 849–854.
[68] J. Heilmann, B. E. Logan, Production of electricity from proteins using a microbial fuel cell, Water Environ. Res.78 (5) (2006) 531–537.
[69] M. Behera, P. S. Jana, T. T. More, M. M. Ghangrekar, Rice mill wastewater treatment in microbial fuel cells fabricated using proton exchange membrane and earthen pot at different pH, Bioelectrochemistry. 79 (2010) 228–233.
[70] A. N. Ghadge, M. M. Ghangrekar, Performance of low cost scalable air–cathode microbial fuel cell made from clayware separator using multiple electrodes, Bioresource Technol.182 (2015) 373–377.
[71] G. Pasternak, J. Greenman, I. Ieropoulos, Comprehensive study on ceramic membranes for low-cost microbial fuel cells, Chemsuschem. 9(2016) 88–96.
[72] M. H. Radi, H. A. Z. A. Fetlawi, Influence of electrodes characteristics on the performance of a microbial fuel cell,J. of Babylon University/Eng.Sci.25(4) (2017) 1328–1338.
[73] C. Lavanya, R. Dhankar, S. Chhikara, Microbial fuel cells as an alternative energy source: A comprehensive review, J. of Int. Academic Res. for Multidisciplinary. 2(4) (2014) 707–722.