The Efficiency of Cytochrome Oxidase Subunit 1 Gene (cox1) in Reconstruction of Phylogenetic Relations among Some Crustacean Species
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
The Efficiency of Cytochrome Oxidase Subunit 1 Gene (cox1) in Reconstruction of Phylogenetic Relations among Some Crustacean Species

Authors: Yasser M. Saad, Heba El-Sebaie Abd El-Sadek

Abstract:

Some Metapenaeus monoceros cox1 gene fragments were isolated, purified, sequenced, and comparatively analyzed with some other Crustacean Cox1 gene sequences (obtained from National Center for Biotechnology Information). This work was designed for testing the efficiency of this system in reconstruction of phylogenetic relations among some Crustacean species belonging to four genera (Metapenaeus, Artemia, Daphnia and Calanus). The single nucleotide polymorphism and haplotype diversity were calculated for all estimated mt-DNA fragments. The genetic distance values were 0.292, 0.015, 0.151, and 0.09 within Metapenaeus species, Calanus species, Artemia species, and Daphnia species, respectively. The reconstructed phylogenetic tree is clustered into some unique clades. Cytochrome oxidase subunit 1 gene (cox1) was a powerful system in reconstruction of phylogenetic relations among evaluated crustacean species.

Keywords: Crustacean, Genetics, cox1, phylogeny.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1131475

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1213

References:


[1] Saad Y. M., Abuzinadah, O. A. H., El-Domyati, F. M., Sabir, J. M. (2012). Analysis of Genetic signature for some Plectropomus species based on some dominant DNA markers. Life Sci J. 9 (4):2370-2375.
[2] Donaldson, E.M., A. Hunter, (1983). Induced final maturation, ovulation and spermiation in cultured fish. In: W.S. Hoar; D.J. Randall and E.M. Donaldson (Ed.), Fish physiology vol. IX: Reproduction, Part B, Behaviour and Fecundity control Academic Press, New York Chap. 7: 351-403.
[3] Rashed, M. Abd-Elsalam, Y. M. Saad, M. M. Ibrahim, A. A. EL - Seoudy (2008). Genetic structure of Natural Egyptian Oreochromis niloticus evaluated from dominant DNA markers. Global Veterinaria, 2(2): 87 – 91.
[4] Rashed, M. A., Y. M. Saad, A. H. Atta, M. H. Sadek (2009). Genetic variations and inheritance of some DNA markers in three constructed Oreochromis niloticus families. World Applied Sciences Journal. 6 (2)203 – 207.
[5] Saad Y. M., N. M. Abou Shabana, N. A. El-Ghazaly, M. H. Fawzy, A. M. Mohamed (2011). Conservation of Some Sea Bream (Sparus aurata) Fish Populations. World Journal of Fish and Marine Sciences. (3)6:489-495.
[6] Saad, Y. M., A. A. Mansour and A. M. EL - Nagar (2009). Monitoring of genetic polymorphism in some tilapia species based on fin tissues isozyme distributions. World Journal of Zoology. 4(1):24 – 28.
[7] Saad Y. M., Heba E. A. EL-Sebaie, Neveen H. Mahoud and Hanaa . Mahmoud (2014). Reconstruction of phylogenetic relations among some Artemia species. Life Sci J.11(8): 822-826.
[8] Treece, G. D. (2000). Artemia production for marine larval fish culture. Southern regional aquaculture center. Publication no. 702.
[9] Kaiser, H.; Gordon, A. K., Paulet, T. G. (2006). Review of the African distribution of the brine shrimp genus Artemia. Water SA, 32 (4). 597-603.
[10] Strepetkaitė, D., Alzbutas, G., Astromskas, E. Lagunavičius, A. Sabaliauskaitė, R. Arbačiauskas, K., Lazutka, J. (2016). Analysis of DNA Methylation and Hydroxymethylation in the Genome of Crustacean Daphnia pulex. Genes. 7: 1.
[11] Ward Robert D., Tyler S. Zemlak, Bronwyn H. Innes1, Peter R. Last, Paul D. N. Hebert (2005). DNA barcoding Australia’s fish species. Phil. Trans. R. Soc. B. 360:1847–1857.
[12] Hillis, D. M., B. K. Mable, A. Larson, S. K. Davis, E. A. Zimmer (1996). Nucleic acids IV: Sequencing and cloing, In: D.M. Hillis, C.Moritz, B. Mable (Eds.), Molecular systematics 2nd edn., pp. 342-343. Sunderland, Massachusetts: Sinauer Associates.
[13] Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3:294-299.
[14] EL-Sebaie Heba E.A., Neveen H. Mahmoud, Hanaa I. Mahmoud, Yasser M. Saad (2014). Biological Performance of Pterophyllum scalare larvae Fed on Artemia and Artificial Diet. World Journal of Fish and Marine Sciences. 6 (3): 289-294.
[15] Amat, D.F. (1980). Differentiation in Artemia strains from Spain. In: G. Persoone, P. Sorgeloos, O. Roels. and E. Jaspers (Eds.) The Brine Shrimp Artemia, Vol. 1, pp. 19-39. Universa Press, Wetteren, Belgium
[16] Romain Scalone, Nicolas Rabet (2013). Presence of Artemia franciscana (Branchiopoda, Anostraca) in France: morphological, genetic, and biometric evidence. Aquatic Invasions. 8 (1): 67–76.
[17] Zhang, H. X., Luo, Q. B., Sun, J. (2013). Mitochondrial genome sequences of Artemia tibetiana and Artemia urmiana: assessing molecular changes for high plateau adaptation. Sci. China Life Sci. 56: 440–452.
[18] Maccari Marta, Francisco Amat, Africa Go´mez (2013). Origin and Genetic Diversity of Diploid Parthenogenetic Artemia in Eurasia. 8:12.e83348.
[19] Erick, Ochieng Ogello; Elijah Kembenya; Cecilia Muthoni Githukia; Betty M. Nyonje, Jonathan Mbonge Munguti (2014). The occurrence of the brine shrimp, Artemia franciscana (Kellog, 1906) in Kenya and the potential economic impacts among Kenyan coastal communities. International Journal of Fisheries and Aquatic Studies. 1(5): 151-156.
[20] Saad Y. M. Sabir, J. M., Abu Zinadah, O. A. H. (2013). Development of ISSR and multiplexISSR markers for reconstructing phylogenetic relations among some shrimp species. Life SciJ. 10(4): 1316-1322.
[21] Kim Dae-Won, Won Gi Yoo, Hyun Chu Park, Hye Sook Yoo, Dong Won Kang, Seon Deok Jin, Hong Ki Min, Woon Kee Paek, Jeongheui Lim (2012). DNA Barcoding of Fish, Insects, and Shellfish in Korea. Genomics and Informatics. 10(3):206-211.
[22] Auel H., Hagen W (2002). Mesozooplankton community structure, abundance and biomass in the central Arctic Ocean. Mar Biol. 140:1013-1021.
[23] Qiao Y., Wang J., Mao Y., Liu M., Song X., Su Y., Wang C., Zheng Z.. (2017). Identification and molecular characterization of Cathepsin L gene and its expression analysis during early ontogenetic development of kuruma shrimp Marsupenaeus japonicus. Acta Oceanologica Sinica. 36: 52–60.
[24] Sangsuriya P, Walaiporn C., Sudarat C., Saengchan S., Anchalee T., Piti A. (2016) A shrimp pacifastin light chain-like inhibitor: Molecular identification and role in the control of the prophenoloxidase system. Developmental and Comparative Immunology 54:32e45.