
A Partially Accelerated Life Test Planning with
Competing Risks and Linear Degradation Path

under Tampered Failure Rate Model
Fariba Azizi, Firoozeh Haghighi, Viliam Makis

Abstract—In this paper, we propose a method to model the
relationship between failure time and degradation for a simple step
stress test where underlying degradation path is linear and different
causes of failure are possible. It is assumed that the intensity function
depends only on the degradation value. No assumptions are made
about the distribution of the failure times. A simple step-stress test
is used to shorten failure time of products and a tampered failure
rate (TFR) model is proposed to describe the effect of the changing
stress on the intensities. We assume that some of the products that
fail during the test have a cause of failure that is only known to
belong to a certain subset of all possible failures. This case is known
as masking. In the presence of masking, the maximum likelihood
estimates (MLEs) of the model parameters are obtained through an
expectation-maximization (EM) algorithm by treating the causes of
failure as missing values. The effect of incomplete information on the
estimation of parameters is studied through a Monte-Carlo simulation.
Finally, a real example is analyzed to illustrate the application of the
proposed methods.

Keywords—Expectation-maximization (EM) algorithm, cause of
failure, intensity, linear degradation path, masked data, reliability
function.

I. INTRODUCTION

TODAY’S products are designed to work without failures

for years. Hence, traditional life testing is not an ap-

propriate method to collect information on the failure of such

products. In such situations, an accelerated life testing (ALT) is

needed to shorten failure times. For more details on ALTs and

Bayesian analysis of ALTs, the reader is referred to [8]-[10].

However, as it is mentioned in [8], for highly reliable products,

little information about reliability is provided by life testings.

In certain situations, it is possible to measure the product

degradation along with failure time and even find a degradation

model. In the context of joint modeling of failure times and

degradation under ALT and competing risks, [7] proposed a

modeling approach based on the Cumulative Exposure (CE)

model. They derived MLEs of the model parameters and

studied their asymptotic properties.

In practice, products are exposed to different causes of

failure. The duration to the first failure is defined to be the

failure time of the product. When a product fails, we generally

observe the cause of failure. However, in certain situations, the

cause of failure for some products is not observed while their
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failure times are observed. This is known as masking. The

problem of estimation of model parameters in the presence of

masked causes of failure using EM algorithm was considered

by [4], [5], [11]. They treated the cause of failure as missing

information. The statistical inference for masked data in step-

stress ALT has been considered by [6], while the works

regarding the Bayesian analyses of this problem have been

studied by [12], [13].

In this work, we propose an approach to model failure

times and linear degradation data under simple step-stress

test and different causes of failure, where masked cause of

failure is possible. Our model is based on the tampered

failure rate (TFR) model proposed by [3]. We estimate the

model parameters using EM algorithm based on a complete-

data likelihood function by treating the cause of failure as

missing values. We also study the effect of masked causes of

failure on the estimation of parameters through a Monte-Carlo

simulation.

The rest of the paper is organized as follows. In Section

I.A, we present the assumptions and notation. The model

is described in Section I.B. In Section I.C, complete-data

likelihood function is derived and EM algorithm is applied to

obtain the MLEs. Numerical results are presented in Section

II.

A. Assumptions and Notation

We make the following assumptions:

Assumption 1: A simple step-stress life test with two stress

levels S0 and S1(S0 < S1) is considered. The test is conducted

as follows. The test units are initially placed under normal

stress S0, and the stress level remains at S0 until the changing

point of stress τ . Then, the stress is increased to higher stress

level S1 and the test continues until all remaining units fail.

Assumption 2: The degradation path of the test unit, Z, is

an increasing function of time t, and follows a linear model

Z(t) = t
A , where A is a random vector with distribution

function π, dependent on the nature of the unit.

Assumption 3: Multiple causes of failure are possible. The

causes of failure are indexed by the integers 1 to s. For each

test unit, we observe the failure time T = min(T 1, ..., T s),
where T j , j = 1, ..., s is latent failure time for j-th cause of

failure. We assume that T 1, ..., T s are statistically independent.

Moreover, it is assumed that the intensity function associated

with the j-th cause of failure denoted by λj(.), depends only

on degradation. This is a practical assumption when the failure
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occurs due to wear, fatigue or mechanical damages. The reader

is referred to [1], [2], [7].

Assumption 4: It is possible that the cause of failure is not

observed for some units on test. That is, for a failed unit one of

the following cases occurs: (1) the cause of failure is observed,

(2) the cause of failure is not observed and it is only known

that the cause of failure belongs to a subset of causes of failure

g ⊂ {1, . . . , s}, called masking group. Let M = 2s − 1 be

the number of masking groups. The corresponding masking

groups are denoted by g1, . . . , gM . Note that the masking

group with a single member represents the exact cause of

failure.

Assumption 5: A TFR model is proposed to relate the

intensities at high level of stress to intensities at lower level

of stress.

Consider that n units are on test and n1 units fail under

S0 and n2 units fail under S1. For the units failed under S0,

the failure time (t), the degradation level at the moment of

failure (z) and associated masking group are recorded. For

these units, the value of a is obtained by a = t
z . Before putting

the unfailed units under S1, the degradation levels of units are

recorded at time τ , denoted by zτ . Then, the value of a for

these units could be obtained by a = τ
zτ . Next, unfailed units

are subjected to S1, and the test continuous till the failure

time and associated masking groups for remaining units are

observed.

Similar to [4], [5], we represent the observation for the i-th
unit on test by complete data set

(ti, ai, γig1 , ..., γigM , δi1, ..., δis), (1)

where γig, g ∈ {g1, . . . , gM}, is the indicator that the cause

of failure of the i-th unit is masked to group g. The δij , j =
1, ..., s, is the indicator that the actual cause of failure of the i-
th unit is j. If the i-th unit is masked, then all δij , j = 1, ..., s,

are unknown.

Given the cause of failure j, the probability that the cause of

failure is masked to group g, is denoted as Pg|j and is given

by

Pg|j = P (cause of failure is masked to group g |
actual cause of failure is j ), j ∈ g,

where
∑

g:j∈g Pg|j = 1.

B. Model

The proposed model is based on the TFR model that

describes the effect of the changing stress on the intensity

in a simple step-stress test. From the assumptions 3 and 5, we

define

λj(z(t)) =

{
λj
0(

t
a ), t ≤ τ,

λj
1(

t
a ) = αjλ

j
0(

t
a ), t > τ.

(2)

where λj
l , is the intensity function corresponding to the j-th

cause of failure, j = 1, ..., s, under the l-th, l = 0, 1, level of
stress, and αj is accelerated factor that depends on the cause
of failure.
Let Rj

l (.|A = a), be the conditional reliability function
corresponding to the j-th cause of failure at the l-th level
of stress given the value of A. From the assumption that the

model is a TFR model, the conditional reliability function of
a test unit in the presence of multiple causes of failure under
simple step-stress test is expressed as

Rj(t|A = a) =

⎧⎪⎪⎨
⎪⎪⎩

Rj
0(t|A = a) 0 ≤ t < τ ;

Rj
1(t|A = a) =

[
Rj

0(τ |A = a)
]1−αj[

Rj
0(t|A = a)

]αj
τ ≤ t < ∞.

C. Maximum Likelihood Function and EM Algorithm

In the proposed model, no assumptions are made about the
distribution of failure times. However, we suppose that λj(z) belongs
to a parametric class λj(z,ηηηj), where ηηηj = (η1j , ..., ηmj) is a vector
of m parameters.
Based on the complete data set in (1), the complete-data likelihood
function is represented as follows:

LC(Θ) ∝
[

n∏
i=1

s∏
j=1

{
λj
0(zi, ηηηj)

}δij

][
n1∏
i=1

s∏
j=1

Rj
0(ti|ai, ηηηj)

]

×
[

n2∏
i=1

s∏
j=1

αj
δij

{
Rj

0(τ |ai, ηηηj)
}1−αj

{
Rj

0(ti|ai, ηηηj)
}αj

]

×
n∏

i=1

s∏
j=1

(
(1−

∑
g∈M∗

j

Pg|j)
1−∑

g∈M∗
j

γig
∏

g∈M∗
j

P
γig

g|j

)δij

,

where Θ is the vector of parameters ηηηj , αj and Pg|j and M∗
j is the

set of masking groups that contain j, except {j} for j = 1, . . . , s.

Similar to [4], [5], [11], we treat the δij as missing data and
apply the EM algorithm which is a general iterative algorithm for ML
estimation in incomplete data problems. The EM algorithm consists
of two steps: E step and M step. In E step, the conditional expectation
of the log-likelihood function given the observed data (OBS), and
current estimated parameters Θ(h), is obtained as follow:

Q(Θ|Θ(h)) = EΘ(h)

[
lC(Θ)|OBS

]
∝

n∑
i=1

s∑
j=1

EΘ(h)(δij |OBS)log

(
λj
0(zi, ηηηj)

)

+

n1∑
i=1

s∑
j=1

log

(
Rj

0(ti|ai, ηηηj)

)

+

n2∑
i=1

s∑
j=1

{
EΘ(h)(δij |OBS)log(αj)

+ (1− αj)log

(
Rj

0(τ |ai, ηηηj)

)

+ αj log

(
Rj

0(ti|ai, ηηηj)

)}

+

n∑
i=1

s∑
j=1

EΘ(h)(δij |OBS)

{(
1−

∑
g∈M∗

j

γig

)
log

(
1−

∑
g∈M∗

j

Pg|j

)

+
∑

g∈M∗
j

γiglogPg|j

}
. (3)

where

EΘ(h)(δij |OBS) =

⎧⎨
⎩

λ
j
l
(z)Pg|j

∑
j′∈gi

λ
j′
l

(z)Pg|j′
j ∈ g

0 j /∈ g,
(4)
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and the intensity function is considered to be

λj(z, θ, ν) = (
z

θj
)νj , j = 1, ..., s. (5)

In M-step of EM algorithm, Θ(h+1) is derived by maximizing the
expected log likelihood function such that:

Q(Θ(h+1)|Θ(h)) ≥ Q(Θ|Θ(h)), for all Θ.

Let μ
(h)
ij = EΘ(h)(δij |OBS). Maximizing Q(Θ|Θ(h)) with respect

to Θ yields

P
(h+1)

g|j =

∑n
i=1 μ

(h)
ij γig∑n

i=1 μ
(h)
ij

,

(η
(h+1)
1j , . . . , η

(h+1)
mj , α

(h+1)
j ) = argmax

(η1j ,...,ηmj ,αj)

Q(Θ|Θ(h)),

for j = 1, . . . , s. The reliability function from linear degradation and
failure time data with power intensity (5), under normal stress S0,
could be estimated as

R̂(t) =

∫ ∞

0

exp

(
− a

s∑
j=1

Λ̂j
0

( t
a

))
dFA(a), (6)

where Λ̂j
0(t) =

∫ t

0
λj
0(u, θ̂, ν̂)du. For more details the reader is

referred to Haghighi and Nikulin (2010).

II. SIMULATION

We conducted a simulation study to assess the performance
of the estimation method discussed in previous sections. We
supposed that two causes of failure with the intensity function
λj
0(z, θ, ν) = ( z

θj
)νj , j = 1, 2 are possible. The degradation

path is assumed to be linear and π follows a Weibull distribution
with the shape parameter a and scale parameter b. A simple
step-stress test with τ = 67, 70, 73 is considered. Given a = 10.6,
b = 4.77, ν1 = 6.883, θ1 = 23.256, α1 = 3.88, ν2 = 10.116,
θ2 = 20, α2 = 2.26, and n = 100, 200, the algorithm proposed
by Han and Kundu (2015), has been adapted to our model in
order to generate data under step-stress test with two causes
of failures. We generated B = 1000 samples and masked the
obtained data based on the different masking probabilities (MP)
(Pg|1, Pg|2) = (0, 0), (0.5, 0.3), (0.6, 0.7). Then, we estimated
the parameters of the model. The parameter estimates as well as
the corresponding MSE are reported in Tables I and II. From the
results, it is observed that the MSEs become larger as the masking
probabilities increase. We also found that as τ increases, the MSE
of the estimators for α1 and α2 increases in most cases, while the
MSE of the other estimators decreases. The reason for this is that
when τ increases, large numbers of failures occur before τ and small
numbers of failures occur after τ , resulting in higher variability in
the estimation of α1 and α2 and lower variability in the estimation
of the other parameters. As we expected , for fixed value of τ and
masking probability, when n increases, the MSEs become smaller.

III. CONCLUSION

In this paper, we have proposed a method to estimate the
reliability of highly reliable products which are exposed to two
causes of failure and have a linear degradation path. We have
assumed that the latent failure times are independent while no
assumptions have been made on the failure time distribution. A step
stress TFR model has been proposed and the parameters of the
model have been estimated through an EM algorithm. Based on the
estimated parameters of intensity functions, the reliability of product
has been estimated. The proposed method is easier when compared
to that of [7], and leads to closed form MLEs for most parameters.
The problem of masked causes of failure has been considered in the

TABLE I
SUMMARY OF ESTIMATION RESULTS FOR MODEL PARAMETERS AND

MEAN SQUARED ERRORS (IN PARENTHESES) BASED ON SIMULATED

MASKED DATA, WHEN a = 10.6, b = 4.77, ν1 = 6.883, θ1 = 23.256,
α1 = 3.88, ν2 = 10.116, θ2 = 20, α2 = 2.26, n = 100

MP Par τ1 = 67 τ2 = 70 τ3 = 73
(0, 0) ν1 7.02(1.28) 7.02(1.22) 7.05(1.22)

θ1 23.57(6.54) 23.50(5.25) 23.41(4.40)
α1 4.10(1.70) 4.08(1.60) 4.08(1.96)
ν2 10.43(2.50) 10.47(2.37) 10.37(1.62)
θ2 20.02(1.41) 19.98(1.22) 19.98(0.95)
α2 2.41(0.67) 2.34(0.68) 2.39(0.75)
Pg|1 0.01(0.001) 0.01(0.001) 0.01(0.001)
Pg|2 0.01(0.002) 0.01(0.002) 0.01(0.001)

(0.5, 0.3) ν1 6.85(2.02) 6.85(1.81) 6.94(1.73)
θ1 24.87(17.07) 24.67(12.49) 24.30(9.55)
α1 4.39(3.83) 4.41(3.41) 4.30(3.71)
ν2 10.15(2.81) 10.16(2.79) 10.16(2.72)
θ2 19.92(1.70) 19.93(1.61) 19.95(1.40)
α2 2.56(0.97) 2.49(0.98) 2.51(1.12)
Pg|1 0.42(0.01) 0.42(0.01) 0.42(0.01)
Pg|2 0.42(0.02) 0.40(0.01) 0.39(0.01)

(0.6, 0.7) ν1 7.04(2.57) 7.16(2.32) 7.18(2.24)
θ1 24.25(15.21) 23.64(9.42) 23.48(8.01)
α1 4.39(4.56) 4.12(3.09) 4.16(4.33)
ν2 10.43(5.52) 10.39(5.01) 10.32(4.68)
θ2 20.20(4.07) 20.22(3.41) 20.29(3.77)
α2 2.58(1.81) 2.55(1.86) 2.56(2.28)
Pg|1 0.58(0.004) 0.59(0.004) 0.59(0.004)
Pg|2 0.72(0.005) 0.71(0.004) 0.70(0.004)

TABLE II
SUMMARY OF ESTIMATION RESULTS FOR MODEL PARAMETERS AND

MEAN SQUARED ERRORS (IN PARENTHESES) BASED ON SIMULATED

MASKED DATA, WHEN a = 10.6, b = 4.77, ν1 = 6.883, θ1 = 23.256,
α1 = 3.88, ν2 = 10.116, θ2 = 20, α2 = 2.26, n = 200

MP Par τ1 = 67 τ2 = 70 τ3 = 73
(0, 0) ν1 6.91(0.61) 6.92(0.53) 6.94(0.55)

θ1 23.47(2.52) 23.42(2.22) 23.36(2.10)
α1 4.01(0.73) 3.99(0.75) 3.94(0.82)
ν2 10.31(1.23) 10.29(1.07) 10.23(0.94)
θ2 19.96(0.68) 19.99(0.54) 20.00(0.46)
α2 2.30(0.31) 2.33(0.33) 2.34(0.37)
Pg|1 0.004(0.000) 0.004(0.001) 0.005(0.000)
Pg|2 0.006(0.000) 0.005(0.000) 0.0055(0.000)

(0.5, 0.3) ν1 6.75(0.90) 6.76(0.80) 6.75(0.73)
θ1 24.52(6.77) 24.38(5.59) 24.31(4.69)
α1 4.18(1.35) 4.19(1.44) 4.26(1.64)
ν2 10.04(1.31) 10.05(1.11) 10.04(1.15)
θ2 19.87(0.88) 19.85(0.59) 19.88(0.56)
α2 2.43(0.43) 2.40(0.41) 2.38(0.41)
Pg|1 0.41(0.009) 0.42(0.008) 0.42(0.008)
Pg|2 0.42(0.01) 0.40(0.01) 0.39(0.009)

(0.6, 0.7) ν1 6.96(1.10) 6.95(0.94) 6.95(0.91)
θ1 23.74(4.85) 23.62(3.73) 23.48(3.46)
α1 4.10(1.47) 4.07(1.43) 4.03(1.66)
ν2 10.12(2.20) 10.17(1.91) 10.25(2.04)
θ2 20.10(1.69) 20.08(1.23) 20.07(1.05)
α2 2.42(0.66) 2.41(0.77) 2.42(0.89)
Pg|1 0.58(0.002) 0.59(0.002) 0.59(0.002)
Pg|2 0.72(0.002) 0.71(0.002) 0.70(0.002)
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model and simulation results show that the masking probabilities
have an effect on the parameter estimates.
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