Studies on Bioaccumulation of 51Cr by Ulva sp. and Ruppia maritima
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
Studies on Bioaccumulation of 51Cr by Ulva sp. and Ruppia maritima

Authors: Clarissa L. de Araujo, Kátia N. Suzuki, Wilson T. V. Machado, Luis F. Bellido, Alfredo V.B. Bellido

Abstract:

This study aims at contributing to the characterization of the process of biological incorporation of chromium by two benthonic species, the macroalgae Ulva sp. and the aquatic macrophyte Ruppia maritima, to subsidize future activities of monitoring the contamination of aquatic biota. This study is based on laboratory experiments to characterize the incorporation kinetics of the radiotracer 51Cr in two oxidation states (III and VI), under different salinities (7, 15, and 21 ‰). Samples of two benthonic species were collected on the margins of Rodrigo de Freitas Lagoon (Rio de Janeiro, Brazil), acclimated in the laboratory and subsequently subjected to experiments. In tests with 51Cr (III and IV), it was observed that accumulation of the metal in Ulva sp. has inverse relationship with salinity, while for R. maritima, the maximum accumulation occurs in salinity 21‰. In experiments with Cr(III), increases in the uptake of ion by both species were verified. The activity of Cr(III) was up to 19 times greater than the Cr(VI). As regards the potential for accumulation of metals, a better sensitivity of Ulva sp. for any chromium tri or hexavalent forms was verified, while for the Cr(VI) it will require low salinities and longer exposure (>24h). For R. maritima, the results showed the uptake of Cr(VI) increase along with time (>20h), because this species is more resistant for the hexavalent form and useful for any salinity as well.

Keywords: Chromium, Cr-51, macroalgae, macrophyte, uptake.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1130741

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 955

References:


[1] Ramade, F. Ecotoxicology. John Wiley & Sons, 2nd edn., 1987, p. 262.
[2] Vonosten, J.R.; Gual, L.A. The science of ecotoxicology and its use as environmental management tool Jaina. Boletín Informativo Expomex, 7(2), p.10-11, 1996.
[3] Boisson, F.; Hutchins, D. A.; Fowler, S.W.; Fisher, N. S.; Teyssié, J.L. Influence of temperature on the accumulation and retention of 11 radionuclides by the marine alga Fucus vesiculosus, Marine Pollution Bulletin, 35 (7–12), pp.313–327, 1997.
[4] Malea P.; Haritonidis, S. Use of the green alga Ulva rigida C. Agardh as an indicator species to reassess metal pollution in the Thermaikos Gulf, Greece, after 13 years. Journal of Applied Phycology, 12 (2), pp.169–176, 2000.
[5] Zalewska, T.; Saniewski, M. Bioaccumulation of gamma emitting radionuclides in red algae from the Baltic Sea under laboratory conditions. Oceanologia, 53 (2), pp. 631–650, 2011.
[6] Abdallah, M.A.M.; Abdallah, A.M.A. Biomonitoring study of heavy metals in biota and sediments in the South Eastern coast of Mediterranean sea, Egypt. Environmental Monitoring and Assessment, 146 (1-3), pp. 139-145, 2008.
[7] Caliceti, M.; Argese, E.; Sfriso, A.; Pavoni, B. Heavy metal contamination in the seaweeds of the Venice lagoon. Chemosphere, 47, pp. 443-454, 2002.
[8] Turner, A.; Pedroso, S. S.; Brown, M.T. Influence of salinity and humic substances on uptake of trace metals by the marine macroalga, Ulva lactuca: Experimental observations and modeling using WHAM. Marine Chemistry, 11, pp.176- 184, 2008.
[9] Coelho, J.P.; Pereira, M.E.; Duarte, A.C.; Pardal, M.A. Contribution of primary producers to mercury trophic transfer in estuarine ecosystems: possible effects of eutrophication. Marine Pollution Bulletin, 58, pp.358–365, 2009.
[10] Phillips, D. J. H. Use of macroalgae and invertebrates as monitors of metal levels in estuarines and coastal waters. In: Furness RW, Rainbow PS (eds) Heavy metals in the marine environment. CRC Press, Boca Raton, Florida, pp.81-99, 1990.
[11] Wang, W.; Dei, R. C. H. Kinetic measurements of metal accumulation in two marine macroalgae. Marine Biology 135, p. 11-23, 1999.
[12] Parkhill, J. P.; Maillet, G.; Cullen, J.J. Fluorescence-based maximal quantum yield for PSII as a diagnostic of nutrient stress. Journal of Phycology, 37, pp.517–529, 2001.
[13] Kučera, T.; HOR‡KOV, H.; Šonsk, A. Toxic metal ions in photoautotrophic organisms. Photosynthetica 46, pp. 481-489, 2008.
[14] Bertrand, M.; Poirieri, I. Photosynthetic organisms and excess of metals. Photosynthetica, 43 (3), pp.345-353, 2005.
[15] Rodgher, S.; Espíndola, E.L.G. The influence of algal densities on the toxicity of chromium for Ceriodaphnia dubia Richard (Cladocera, Crustacea). Brazilian. Journal Biology., 68(2), pp. 341-348, 2008.
[16] Soares, C.R.F.S.; Siqueira, J.O.; Carvalho, J.G.; Moreira, F.M.S.; Grazziotti, P.H. Crescimento e nutrição mineral de Eucalyptus maculata e Eucalyptus urophylla em solução nutritiva com concentração crescente de cobre. Revista Brasileira de Fisiologia Vegetal, 12(3), pp. 213-225, 2008.
[17] Gupta, V.K.; Carrott, P.J.M.; Ribeiro Carrott, M. M. L.; Suhas, T.I. Low-Cost adsorbents: growing approach to wastewater treatment - a review. Critical Reviews in Environmental Science and Technology, 39, 783-842.
[18] Pandey, V.; Dixit, V.; Shyam, R. Chromium effect on ROS generation and detoxification in pea (Pisum sativum) leaf chloroplasts. Protoplasma, v. 236, n. 1-4, pp. 85-95, 2010.
[19] Nayak, D.; Ghosh, K.; Lahiri, S. Studies on bio-accumulation of 51Cr by Piper nigrum. Journal of Radioanalytical and Nuclear Chemistry, 280 (3), pp.503–506, 2009.
[20] Sun, X.F.; Ma, Y.; Liu, X.W.; Wang, S.G.; Gao, B.Y.; Li, X.M. Sorption and detoxification of chromium(VI) by aerobic granules functionalized with polyethylenimine. Water research, 44(8), pp.2517–2524, 2010.
[21] Duncan, J. B.; Guthrie, M. D.; Lueck, K. J.; Avila, M. Laboratory Study for the Reduction of Chrome(VI) to Chrome(lII) Using Sodium Metabisulfite under Acidic Conditions. CH2M HILL Hanford Group, Inc. Richland, WA: U. S. Department of Energy Contract, 29, 2007.
[22] Martins, I.; Oliveira, J. M.; Flindt, M.R.; Marques J.C. The effect of salinity on the growth rate of the macroalgae Enteromorpha intestinalis (Chlorophyta) in the Mondego estuary (west Portugal). Acta Oecologica, 20, pp. 259-265, 1999.
[23] Taylor, R.; Fletcher, R.L.; Raven, J.A. Preliminary studies on the growth of selected ‘green tide’ algae in laboratory culture: effects of irradiance, temperature, salinity, and nutrients on growth rate. Botanica Marina, 44, pp. 327–336, 2001.
[24] Kim, K.Y.; Lee, I.K. The germling growth of Enteromorpha intestinalis (Chlorophyta) in laboratory culture under different combinations of irradiance and salinity and temperature and salinity. Phycologia 35, pp. 327-331, 1996.
[25] Forstner, U. Metal transfer between solid and aqueous phases. In: Forstner, U., Wittman, G.T.W. (Eds.), Metal Pollution in the Aquatic Environment. Springer-Verlag, Berlin, pp. 197–270, 1979.
[26] Williams, T.P.; Bubb, J.M.; Lester, J.N. Metal accumulation within salt marsh environments: a review. Marine Pollution Bulletin 28 (5), pp. 277–290, 1994.
[27] Hartog, C. D.; Kuo, J. Taxonomy and Biogeography of Seagrasses. P. 1–23. In: Larkum, A.W.D. et al. (eds.), Seagrasses: biology, ecology and conservation. The Netherlands: Springer, p. 691, 2006.
[28] Kantrud, H. A. Wigeongrass (Ruppia maritima L.): a literature review. U.S. Fish and Wildlife Service Fish and Wildlife. Research 10, p. 58, 1991.
[29] Fritioff, A.; Kautsky, L.; Greger, M. Influence of temperature and salinity on heavy metal uptake by submersed plants. Environmental Pollution, 133, p. 265–274, 2005.
[30] Phillips, D. J. H.; Rainbow, P.S. Biomonitoring of Trace Aquatic Contaminants, 2nd edn. Chapman and Hall, London, UK, 1994.
[31] Pfeiffer, W. C.; Lacerda, L. D.; Fiszman, M.; Lima, N. R. W. Metais pesados no pescado da Baía de Sepetiba, estado do Rio de Janeiro. Ciência e Cultura, 37 (2), pp. 197-302, 1985.
[32] Farías, S.; Arisnabarreta, S. P.; Vodopivez, C.; Smichowski, P. (2002). Levels of essential and potentially toxic trace metals in Antarctic macroalgae. Spectrochimica Acta Part B, 57, 2133–2140.
[33] Al-Shwafi, N. A.; Rushdi, A. I. Heavy metal concentrations in marine green, brown, and red seaweeds from coastal waters of Yemen, the Gulf of Aden. Environmental Geology 55, pp. 653-660, 2008.
[34] Lee, W.; Wang, W. Metal accumulation in the green macroalga Ulva fasciata: effects of nitrate, ammonium and phosphate. The Science of the Total Environment, 278, pp. 11-22, 2001.
[35] Haritonidis, S.; Malea, P. Bioaccumulation of metals by the green alga Ulva rigida from Thermaikos Gulf, Greece. Environmental Pollution, 104, pp. 365-372, 1999.
[36] Pinchetti, J.L.G.; Fernandez, E.D.C.; Diez, P.M.; Reina, G.G. Nitrogen availability influences the biochemical composition and photosynthesis of tank-cultivated Ulva rigida (Chlorophyta). Journal of Applied Phycology, 10, pp. 383-389, 1998.