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Abstract—An increasing number of mobile devices with integrated
cameras has meant that most digital video comes from these devices.
These digital videos can be made anytime, anywhere and for different
purposes. They can also be shared on the Internet in a short period
of time and may sometimes contain recordings of illegal acts. The
need to reliably trace the origin becomes evident when these videos
are used for forensic purposes. This work proposes an algorithm
to identify the brand and model of mobile device which generated
the video. Its procedure is as follows: after obtaining the relevant
video information, a classification algorithm based on sensor noise
and Wavelet Transform performs the aforementioned identification
process. We also present experimental results that support the validity
of the techniques used and show promising results.

Keywords—Digital video, forensics analysis, key frame, mobile
device, PRNU, sensor noise, source identification.

I. INTRODUCTION

IMAGES captured by electronic devices (i.e. smartphones)

are often considered part of evidence in Court, and in a

few minutes a video can communicate an enormous amount

of information. According to the traffic meter “Alexa, The

Web Information Company” [1], YouTube is currently the

third most visited website in the world, which gives us a

clear indication of the online popularity of videos. Video is

widely used in everyday life due to the availability of a wide

range of mobile devices that can reproduce and/or record it,

such as mobile phones, tablets, portable game consoles and

digital cameras or camcorders. As for mobile devices, Gartner

Inc. [2], states that sales of smartphones grew by 36% in the

fourth quarter of 2013, and represented 57.6% of the global

sales of mobile phones in the fourth quarter, compared to

44% with respect to 2012. As digital cameras have swept

away traditional film cameras in terms of popularity, nowadays

mobile devices equipped with cameras have an important role

in putting an end to the rapid growth that digital cameras

previously experimented. A report by IC Insights [3] predicted

that by 2016 the market rate of DSCs (Digital Still Camera)

will drop from 47% in 2012 to 27%; it also predicts a rise

in sales of digital cameras built into smartphones, PCs and

tablets, from 31% in 2012 to 42% by 2016.
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Due to the frequent use of mobile devices, in some cases

there exist legal restrictions or limitations to their use in

various locations, such as schools, universities, government

offices, companies, etc. In parallel, videos are increasingly

used, either directly or indirectly, in legal proceedings as

evidence for law enforcement [4]. Therefore, given the

increasing importance of video, digital video forensics are

particularly relevant. Their main goal is the acquisition and

analysis of digital video in order to find forensically sound

evidence, generally while investigating a crime. Within this

discipline, Digital Video Integrity aims to establish whether

a digital video has been tampered with, Digital Video
Steganography studies if a video contains hidden data and

Video Source Camera Identification aims to identify which

specific camera has been used to capture a video.
Video Source Camera Identification has many applications

in real world scenarios, and its study is especially important

and becoming more relevant with every passing day. For

example, when a video is presented as evidence in a court of

law, identifying the acquisition device of the video could be as

important as the video itself. Not doing this in a forensically

sound way can lead to legal challenges and render the evidence

invalid [5]. Additionally, images or videos shared through

social networks (Flickr, Instagram, Facebook, Twitter, etc.) or

personal email can be authenticated and linked to the device

(in this case, the smartphone or digital camera). This paper

presents a combination of forensic analysis techniques for the

identification of a video source device, but focusing on videos

generated by mobile devices, mostly smartphones.
The paper is divided into six sections, the first being this

introduction. Section II presents the differences between the

pipeline in the creation of an image and a video. Section

III introduces a state of the art for the forensic analysis of

images and videos, regarding the issue of source acquisition

identification. The proposed technique is presented in detail

in Section IV. The supporting experiments are presented in

Section V. Finally, Section VI shows the conclusions drawn

from this work.

II. SOURCE ACQUISITION IDENTIFICATION TECHNIQUES

Most research in the field of source identification has been

focused on photographic images. However, there is increased

need for research to find solutions to the forensic issues

characteristic of video, as they have some peculiarities that

need to be dealt with and a wide range of alterations that can

be applied to them. Most of the forensic analysis techniques

developed for images can also be applied to video, starting

with operating over individual video frames [6].
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In [7], a quite detailed comparison of the major techniques

for source acquisition identification is presented. These are

divided into five approaches, namely those based on metadata,

image features, CFA array and color interpolation defects,

sensor imperfections, and wavelet transforms.

The research area based around the study of metadata is

largely dependent on the data inserted by the manufacturer

when the image is created. The most widespread specification

is Exif, and has two useful specific tags: “Make” and “Model”.

Unfortunately, adding metadata to the image is by no means

mandatory.

Among the existing methods which are based on sensor

imperfections, there are two main branches from which pixel

or sensor pattern noise can be studied. In [8] it was shown that

camera sensors generate pattern noise (Sensor Pattern Noise)

which could be used as the sole method of identification.

In [9] it was shown that the extracted image sensor noise

could be severely contaminated by the details of specific

scenes. To deal with this problem, a new approach to mitigate

the influence of the scene details was proposed, thus improving

the success rate. In the experiments, 9 cameras, with 320

photos from each camera were used, with varying outdoor

and indoor scenes.

Finally, in the area of wavelet transforms, there are various

approaches, for example, [10] proposes a new identification

technique based on conditional probability features. Such

features were initially proposed for steganalysis purposes in

[11]. The set of experiments was performed with 4 different

iPhone cameras, proving that the technical proposal works well

for different models of the same camera. Ac curacies of 98.6%,

97.8% and 92.5% were obtained in the classification of 2, 3

and 4 iPhones, respectively, with an image crop of 800 by

600. This approach, unfortunately, does not look too promising

when images are preprocessed.

In [12] it is determined that the use of sensor pattern noise

together with the wavelet transform is an effective method

for source identification, reaching an average success rate of

87.21%. This method is used to identify smartphones (based

on their built-in cameras).

In the case of the development of techniques for video

source acquisition identification, there are very few academic

works in this area. Some are directly based on the encoding

sequence, and others on frame extraction for later applying

some classification method for still images.

Reference [13] proposes an algorithm based on motion

vector information in the encoded stream. 100 video clips

(20 of them coming from “Video Quality Experts Group”

and 80 from DVDs) were used in the experiments. All the

videos were encoded using different video editing software

solutions. Through their experiments, a 74.63% accuracy in

the identification of software used in encoding was obtained.

Reference [14] proposes an identification method using stills

from videos. The characteristics of conditional probability

are used and taken directly from the video frames. Tests

used 4 different models of cameras and an SVM classifier,

obtaining an 82.6% accuracy in the first experiment. In a

second experiment using the same set of videos, taking the

luminance value the average accuracy was 100%. In a third

experiment where a set of videos with major changes in the

scenes was used, the accuracy was 97.2%.

III. TECHNIQUE DESCRIPTION

The proposed system has four main stages: The first divides

input video into individual frames. Frame rate is generally

about 15 to 30 frames per second. Next, a set of key frames

are extracted.

To start the extraction process, the first frame is labeled

a key frame. Then, the frame difference between the current

frame and the last extracted key frame is computed. Color

histogram correlation is used to choose frames with a

significant scene change. If the frame difference satisfies a

certain threshold condition, then the current frame is selected

as a key frame. This process is repeated for all frames in the

video until the whole set of key frames is extracted. This stage

is crucial for the rest of the process.

The following stage extracts the sensor noise pattern from

each key frame. The features are obtained by using a wavelet

transform.

The final step is to use a Support Vector Machine (SVM)

classifier.

It uses histogram correlation similarity to compare two

frames, and proposes an improved key frame selection method

to obtain more representative key frames.

The algorithm calculates and compares the frames contained

in a video, the ones showing a significant change of scene will

be used for classification and identification. This is because in

[9] it was shown that the extracted noise in an image sensor

may be severely contaminated by the details of the scene, in

addition to video data containing temporal, spatial and spectral

redundancy.

To compare two frames, it is necessary to extract the

histogram from each of them (color value frequency), and by

correlating them, it can be found how much similarity exists.

The correlation is calculated by (1):

correlation(H1, H2) =

∑
i

H ′
1(i)H

′
2(i)√∑

i

H ′
1(i)

2
H ′

2(i)
2

(1)

Where H ′
k(i) = Hk(i) − 1

N (
∑
j

Hk(j)) and N is equal to

the number of gray levels for each RGB color channel.

There are several methods to calculate the difference

between two-dimensional color histograms, but calculating

their correlation is suggested, since it is a random vector

(multi-dimensional random variable).

The first frame of the video is always taken as part of the

set of selected key frames. The comparison is performed by

taking the first frame and the second; if there is no significant

difference between them based on the threshold, the next frame

is taken and a new comparison with the first one is performed.

This is done until the result of the correlation is less than the

threshold, to take into account the frame for classification and

identification.
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If in the end the amount of scene changes based on the

threshold is less than the amount needed, the comparison

process is repeated by increasing the threshold until the

number of scene changes is greater than or equal to the desired

number. When the threshold is estimated, this is what is finally

used for the extraction of video key frames.

To determine a possible initial threshold, several

experiments were performed on the videos, and it was

found that by comparing the histograms of a video, the lowest

average correlation was -0.27, showing at least 1 or 2 scene

changes, thus defining the initial threshold. For the increment

value, experiments were made with different values, such

as 0.1, 0.01, 0.001, 0.0001 and 0.0001.The 0.001 value was

chosen as it proved to be an ideal value to reach the desired

number of frames in less time and with more accuracy. These

increments are made because, if the threshold is closer to

the maximum value of direct correlation, i.e. to the value

of 1, more scene changes can be found, thus extracting the

number of frames defined by the user for classification and

identification.

By analyzing the state of art works, it was found that

the sensor pattern noise and wavelet transform help to

define a fingerprint, these being effective methods for source

identification. This article extends the use of sensor pattern

noise and wavelet transform of [12].

Obtaining the sensor pattern noise of the images is based

on the method described in [8] with the modifications of [12].

The next step is to get the features that characterize the sensor

noise for the classification purposes. A total of 81 features

(3 channels x 3 wavelet components x 9 central times) are

obtained using the feature extraction algorithm described in

[12].

IV. EXPERIMENTS AND RESULTS

To test the effectiveness of the frame extraction algorithm

and the use of the fingerprints for source classification and

identification, videos were captured without any consideration

about the temporal or spatial characteristics, since they must

represent real cases. As mobile phones currently show large

improvements in video quality, it was considered to use

1080p quality videos (HD videos), i.e. with a resolution of

1920x1080 pixels. Table I shows the basic specifications and

models of mobile phones considered for the experiments.

The classification was performed using an SVM with RBF

kernel. The LibSVM package in which the SVM allows

multiple class classification was used. It is also the most

commonly used option by the most recent works of the state of

the art and they show good results. The classifier was trained

and tested with the feature vectors extracted from the frames.

TABLE I
SETTINGS USED IN MOBILE PHONE DIGITAL CAMERAS

Make - Model FPS Format Codec
Apple - iPhone 5 (M1) 24 mov H.264

Nokia - 808 Pureview (M2) 30 mp4 MPEG-4

Samsung - Galaxy S4 (M3) 30 mp4 MPEG-4

Wiko - Cink Slim (M4) 12 3gp MPEG-4

Zopo - ZP-980 (M5) 15 3gp MPEG-4

5 experiments were performed in which the 5 mobile

devices in Table I were used.
Table II shows the average success percentages for each

device for different crop sizes of frame, success percentage

meaning the percentage of frames in a video whose source was

correctly identified by the classifier. That is, for instance for

a particular video from which 100 frames were extracted, the

percentage of them that the classifier classified as belonging

to the video in question is calculated. For each device, as

discussed above, 5 videos were used for tests. Each video

obtained a success percentage and the Table II shows the

average success rate of 5 videos for each device and crop

size.

TABLE II
AVERAGE SUCCESS RATE BY DEVICE ACCORDING TO CROP SIZE

Device % of
Resolution M1 M2 M3 M4 M5 success

1024x768 80.80% 97.40% 88.80% 85.40% 75.40% 85.56%

800x600 81.80% 96.80% 84.80% 86.00% 68.80% 83.64%

640x480 79.60% 95.60% 85.00% 85.60% 66.20% 82.40%

320x240 73.80% 88.20% 78.00% 78.80% 63.40% 76.44%

128x128 65.80% 79.20% 66.60% 75.00% 64.00% 70.12%

In most cases, the success percentages per device increase

with larger crop size of frames (this occurs in all cases taking

into account the average success rate).The highest resolution

(1024x768) obtains the highest average success rate, 85.56%.
As can be observed, it exceeds the individual video rate of

50% in all cases. This indicates that in all cases, for all frames

of a given video from a particular device, at least 50% of the

frames are identified correctly. Finally, the source identification

of a video should answer the specific question of to which

acquisition source that video belongs. As a logical criterion,

it can be estimated that the video belongs to the source with

the highest number of frames classified with respect to the

other sources (higher success rate compared to other sources).

It could be possible that several sources had exactly the same

number of frames and at the same time they were the highest

number with respect to the other sources. In this unusual case,

it could be said that the video source cannot be identified with

determination and the doubt would be between those several

sources.
The experiments obtain conclusive results which leave no

doubt as to the identification of the video acquisition source

considering the criteria defined above, since in all cases the

success exceeds 50%. It can also be noted that success rates

in many cases are much higher (in some cases reaching up

to 100%).Therefore, according to this experiment, using the

previously defined criterion and taking the video as a unitary

entity (i.e. a video is either properly classified or not), it can

be concluded that this technique identifies the video source

with a 100% success rate.
Using the results of experiments, it is observed that there is

a 2.92%, improvement in the average success rate for a crop

size of 1920x1080 with respect to a crop size of 1024x1024.In

Table II can be seen that using the entire image for every case

there is a higher average success rate in source identification,

although the increase is small. In general, the larger the size
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of the crop, the higher its success rate is. Also, with the results

of the experiments is concluded that from a certain crop size

the increase in the success rate is small, and in some cases

there can be small decrements. We must also bear in mind

that the larger the crop, the longer the run time of the feature

extraction algorithm.

V. CONCLUSIONS

The general conclusion is that this technique presented is

valid and obtains good results. The presented frame extraction

algorithm takes into account the nature of a video and its

frames, optimizing the extraction of key frames. i.e., it extracts

frames taking into account that if obtained frames have greater

scene variation between them (looking for scene changes),

the future classification process will be better. However, for

classification using SVM a number of frames is needed for

training and testing, which is also taken into account by this

algorithm, because there may be a case in which the video

has little change of scenes and the algorithm has to obtain

the most distant frames between existing scenes. Once the

frames have been obtained we rely on the extraction of features

obtained from the sensor pattern noise and wavelet transform

as specified in [12].

Once the selected key frames have been classified, the

question of what the video acquisition source is as a unitary

entity must be answered. Our view has been that the video

belongs to the source with the highest number of frames

classified into this type. Taking this approach, the application

of the proposed techniques has been successful, since the

success rate has been 100%.
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