Contemplating Preference Ratings of Corporate Social Responsibility Practices for Supply Chain Performance System Implementation

Mohit Tyagi, Pradeep Kumar

Abstract—The objective of this research work is to identify and analyze the significant corporate social responsibility (CSR) practices with an aim to improve the supply chain performance of automobile industry located at National Capital Region (NCR) of India. To accomplish the objective, 6 CSR practices have been considered and analyzed using expert’s preference rating (EPR) approach. The considered CSR practices are namely, Top management and employee awareness about CSR (P_1), Employee involvement in social and environmental problems (P_2), Protection of human rights (P_3), Waste reduction, energy saving and water conservation (P_4), Proper visibility of CSR guidelines (P_5) and Broad perception towards CSR initiatives (P_6). The outcomes of this research may help managers in decision making processes and framing policies for SCP implementation under CSR context.

Keywords—Supply chain performance, corporate social responsibility, CSR practices, expert’s preference rating approach.

I. INTRODUCTION

In the present surrounding, CSR can be seen as a very exclusive theme among the manufacturing organizations. To accomplish a better stability and reputation, in the competitive market place, organizations are focusing on implementation of CSR policies along with their supply chain functions.

CSR emphasizes more attention of firm’s responsibilities towards the social and environmental practices, instead of only on legal and economic concerns. CSR is seen as an inclusive set of policies, practices, and programs that are integrated into business operations, supply chains, and decision-making processes throughout the company. According to [1], CSR is a multi-dimensional structure and has four important dimensions: Economic, legal, ethical and discretionary. Reference [2] defined CSR as the set of activities related to social, environmental etc. those may be beyond the interest of the firm but may be required by law. Reference [3] defined CSR as: “a driver for an organization in order to improve the reputation, long term success, health and safety regulations, public awareness, and managing risk, brand recognition, cost reduction and customer loyalty”. Reference [4] stated that CSR works as a key enabler to enlarge the view of responsibilities of business to integrate the environment, local communities, employment practices, and ethics in business practices, human rights, the marketplace as well as the workplace. Reference [5] described that CSR practice should be structured in a way of having responsibility about the impact on employees, customers, communities and operational environment. CSR not only affects the company and its shareholder but it also has beneficial impact on society [6]. [7] stated that CSR has a positive relationship with social performance.

The aim of present research work is to identify and analyze the important CSR practices in order to improve the supply chain performance of an organization under CSR considerations. For the analysis purpose, an EPR approach has been used.

II. IDENTIFICATION OF CSR PRACTICES

To meet the aim, six CSR practices have been identified on the basis of literature review and discussion with the field experts taken from automobile sector located at NCR of India. A summary of identified CSR practices with corresponding reference support is given in Table I.

<table>
<thead>
<tr>
<th>SNo.</th>
<th>CSR practices</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Top management and employee awareness about CSR</td>
<td>[11]-[13]</td>
</tr>
<tr>
<td>2.</td>
<td>Employee involvement in social and environmental problems</td>
<td>[14]-[17]</td>
</tr>
<tr>
<td>3.</td>
<td>Protection of human rights</td>
<td>[15], [17]-[20]</td>
</tr>
<tr>
<td>4.</td>
<td>Waste reduction, energy saving and water conservation</td>
<td>[12], [18], [21]-[24]</td>
</tr>
<tr>
<td>5.</td>
<td>Proper visibility of CSR guidelines</td>
<td>[25]-[30]</td>
</tr>
<tr>
<td>6.</td>
<td>Broad perception towards CSR initiatives</td>
<td>[26], [31]-[35]</td>
</tr>
</tbody>
</table>

III. PREFERENCE RATING APPROACH WITH NUMERICAL ILLUSTRATION

This research work provides a mutual interaction among the significant CSR practices by using a rating approach, called EPR approach developed by [8]. This approach determines the relative importance rating of the CSR practices in a precise way without consideration of any data scale. To model the human’s incomplete or uncertain opinions, a graph theory-based representation technique has been used to structure the preference graph’s (PG’s) in order to visualize the mutual relationships of considered practices at initial level [9], [10]. However, various multi-criteria decision making approaches

Mohit Tyagi is an Assistant Professor in the Department of Mechanical and Production & Industrial Engineering, Delhi Technological University Delhi, India (corresponding author, e-mail: mohitmied@gmail.com).

Pradeep Kumar is a Professor in the Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, India (e-mail: kumarfme@gmail.com).
exists in the literature, such as AHP, ANP, fuzzy AHP, fuzzy ANP, DEMATEL, and fuzzy DEMATEL. While all have a need of particular data scale in order to capture the opinions of field experts. In comparison, the EPR approach does not have a need of any type of scale. In EPR approach structured the PG’s and analyzes them to determine the relative importance ratings of the considered practices.

The PG representations of expert preferences about the CSR practices are given in Fig. 1. During this research, four experts are selected and six CSR practices are identified based on the literature and expert opinions. These four experts are denoted as EP1, EP2, EP3 and EP4 and six practices as P1, P2, P3, P4, P5, and P6 respectively (P1 for “Top management and employee awareness about CSR”, P2 for “Employee involvement in social and environmental problems”, P3 for “Protection of human rights”, P4 for “Waste reduction, energy saving and water conservation”, P5 for “Proper visibility of CSR guidelines”, P6 for “Lack of consensus on implementing CSR initiatives sues”). PG’s represented by four experts can be denoted as PG1, PG2, PG3 and PG4, and are shown as in Fig. 1.

Preference graph (PG1) over M practices (here, M = 6) may be made by expert 1. For a set of n experts, EPn represent a PG. Then, let P Gn be an adjacency matrix for the PG and let M be a positive integer. Then, the entry pg ij (i, j=1, 2,⋯, M) of PGn gives the number of M stage dominances of i over j. That is, the dominance matrix Dn is:

\[D_n = PG_1^1 + PG_2^2 + \cdots + PG_n^M \]

The sum of the entries (dnm) in row m of the dominance matrix means the total number of ways that m is dominant over one, two, ..., M stages [36]. In this research, (M-1) stage dominances are considered for the PG. Here, six CSR practices have been considered; it means five dominance stages will exist. The adjacency matrix of PG1 is given as:

\[
PG_1^1 = \begin{bmatrix}
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
4 & 0 & 1 & 0 & 0 & 0 \\
\end{bmatrix}
\]

For M = 6, the dominance matrix (D1) of PG1 can be computed by:

\[D_1 = PG_1^1 + PG_1^2 + PG_1^3 + PG_1^4 + PG_1^5 \]

Using (3), D1 of PG1 is obtained as:

\[
D_1 = \begin{bmatrix}
0 & 2 & 3 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 2 & 0 & 0 & 1 \\
4 & 0 & 1 & 0 & 0 & 0 \\
\end{bmatrix}
\]

Then, sum of entries of (4), has been calculated as: d1 = 8, d2 = 1, d3 = 0, d4 = 2, d5 = 4 and d6 = 1. In other words, CSR practice P1 has dominated nature in 0+2+3+1+1+1 = 8 ways, P2 has a dominated nature in one way, P1 in zero way, P3 in two ways, P5 in four ways, P6 in one way. Similarly repeat the above computation procedure for PG2, PG3 and PG4.

Dominance matrix (D2) of PG2 can be computed by:

\[D_2 = PG_2^1 + PG_2^2 + PG_2^3 + PG_2^4 + PG_2^5 \]

Using (5), D2 of PG2 is obtained as:

\[
D_2 = \begin{bmatrix}
0 & 2 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 2 & 2 & 1 & 0 & 1 \\
4 & 0 & 1 & 1 & 0 & 0 \\
\end{bmatrix}
\]

Then, sum of entries of (6), has been calculated as: d1 = 7, d2 = 0, d3 = 0, d4 = 2, d5 = 6 and d6 = 2.
The relative degree of preference (RDP) of each expert (n) can be obtained by the following expression to be the maximum of 1 as:

$$r_{dp} = \frac{(1 + d_h)}{\max_{m=1:M}(1 + d_h)}$$ \hspace{1cm} (7)

For the illustrative convenience, let us denote the RDP of each expert (n) as a vector:

$$\text{RDP}_n = (r_{dp_1}^n, r_{dp_2}^n, \ldots, r_{dp_M}^n)$$ \hspace{1cm} (8)

The relative degree of preference (RDP) for PG1, PG2, PG3 and PG4 are calculated and are summarized as:

- $RDP_1 = \left(\frac{2}{5}, \frac{3}{5}, \frac{5}{9}, \frac{1}{9}, \frac{2}{2}, \frac{3}{3}, \frac{3}{3}, \frac{3}{3} \right)$
- $RDP_2 = \left(\frac{3}{3}, \frac{2}{2}, \frac{3}{3}, \frac{3}{3}, \frac{5}{5}, \frac{3}{3}, \frac{3}{3}, \frac{3}{3} \right)$
- $RDP_3 = \left(\frac{1}{1}, \frac{2}{2}, \frac{6}{6}, \frac{6}{6}, \frac{2}{2}, \frac{6}{6}, \frac{6}{6}, \frac{6}{6} \right)$
- $RDP_4 = \left(\frac{2}{2}, \frac{1}{1}, \frac{6}{6}, \frac{6}{6}, \frac{5}{5}, \frac{6}{6}, \frac{6}{6}, \frac{6}{6} \right)$

Based on the RDP of each company, we can obtain the relative importance ratings of the issues. Since K companies are taken into account, the relative importance rating (RIR) of each issue is determined by the following normalization to be the maximum of 1, and its vector expression can be also denoted as:

$$r_{ir_m} = \frac{\sum_{m=1}^{K} r_{dp_m}}{\max_{m=1:M}(\sum_{m=1}^{K} r_{dp_m})}$$ \hspace{1cm} (9)

$$\text{RIR} = (r_{ir_1}, r_{ir_2}, \ldots, r_{ir_m}, \ldots, r_{ir_K})$$ \hspace{1cm} (10)

The relative importance ratings (RIR) of issues are determined and summarized as in (11):

$$\text{RIR} = (1.0000, 0.2209, 0.1485, 0.3586, 0.8947, 0.5035)$$ \hspace{1cm} (11)

IV. RESULTS

Equation (11) gives the summary of relative importance rating of CSR practices. From this equation, it is clear that the practice ‘P1’ (with a relative importance rating of 1.00) is considerably more important and practice ‘P6’ is least important (with a relative importance rating of 0.5035) as compared to the other considerable practices.

V. CONCLUSIONS

During present research work, an EPR approach is used to analyze the interaction among the considered CSR practices. PG’s are used to collect the uncertain opinions of the decision makers in order to improve the supply chain performance under CSR context. On the basis of four PG’s as shown in Fig. 1, the relative importance rating (RIR) of each CSR practice has been calculated and are summarized in (11). This particular construction provides a transparent picture about the importance level of considered practices. The analysis reveals that the CSR practice namely ‘top management and employee awareness about CSR’ is very important and plays a significant role in improving the supply chain performance system under CSR context. The overall prioritization order for considered CSR practices may obtained as $P_1 > P_3 > P_6 > P_4 > P_2 > P_5$.

REFERENCES

