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Abstract—This article considers the problem of evaluating
infinite-time (or finite-time) ruin probability under a given compound
Poisson surplus process by approximating the claim size distribution
by a finite mixture exponential, say Hyperexponential, distribution. It
restates the infinite-time (or finite-time) ruin probability as a solvable
ordinary differential equation (or a partial differential equation).
Application of our findings has been given through a simulation study.
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I. INTRODUCTION

CONSIDER the following compound Poisson process

Ut = u+ ct−
N(t)∑
j=1

Xj , (1)

where X1, X2, · · · are a sequence of i.i.d. random variables

with common density function fX(·), N(t) is a Poisson

process with intensity rate λ, u and c stand for initial

wealth/reserve and premium of the process, respectively.
The finite-time and infinite-time ruin probabilities for the

above compound Poisson process are, respectively, denoted

by ψ(u;T ) and ψ(u) and defined by

ψ(u;T ) = P (τu ≤ T )

ψ(u) = P (τu < ∞), (2)

where τu is the hitting time, i.e., τu := inf{t : Ut ≤ 0|U0 =
u}.

Reference [15], among others, established that an

infinite-time ruin probability ψ(u) under a compound Poisson

process can be restated as the following integro-differential

equation

cψ̃(1)(u)− λψ̃(u) + λ

∫ u

0

ψ̃(u− x)fX(x)dx = 0, (3)

where ψ̃(u) = 1− ψ(u) and lim
u→∞ψ(u) = 0.

Reference [18] showed that a finite-time ruin probability
ψ(u;T ) under a compound Poisson process can be restated as
the following partial integro-differential equation

c

(
∂ψ̃(u;T )

∂u
− ∂ψ̃(u;T )

∂T

)
− λψ̃(u;T )

+λ

∫ u

0
ψ̃(u− x;T )fX(x)dx = 0, (4)
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where ψ̃(u;T ) = 1−ψ(u;T ) lim
u→∞ψ(u;T ) = 0 for all T > 0

and ψ(u; 0) = 0 for all u ≥ 0.
Since the compound Poisson surplus process plays a vital

role in many actuarial models, several authors study ruin

probability under surplus process (1). An excellent review

for infinite-time ruin probability can be found in [3]. For

finite-time ruin probability: [18] showed that for exponential

claim size distribution, partial integro-differential equation (4)

can be transformed into a second-order partial differential

equation. Reference [1] considered a compound Poisson

surplus process with constant force of real interest. Then,

they restated finite-time ruin probability ψ(u;T ) as a gamma

series expansion. Reference [14] provided a global Lagrange

type approximation in the z-space for ψ(u;T ) under surplus

process (1). References [2] and [24] employed the Padé

approximant method to approximate ψ(u;T ) under surplus

process (1).

This article in the first step approximates claim size

density function fX(·) with a finite mixture exponential, say

Hyperexponential, density function f∗
X(·). Then, it transforms

two integro-differential equations (3) and (4), respectively,

into an ordinary differential equation (ODE) and a partial

differential equation (PDE). A simulation study has been

conducted to show practical application of our findings.

The rest of this article is organized as follows: Some

mathematical background for the problem has been collected

in Section II. Section III provides the main contribution of this

article. Applications of the results have been given in Section

IV.

II. PRELIMINARIES

From hereafter now, we set
∑b

j=a Aj = 0, for b < a.
The following recalls the exponential type T functions

which play a vital role in the rest of this article.

Definition 1. An L1(R) ∩ L2(R) function f is said to be of
exponential type T on C if there are positive constants M and
T such that |f(ω)| ≤ M exp{T |ω|}, for ω ∈ C.

The Fourier transforms of exponential type functions

are continuous functions which are infinitely differentiable

everywhere and are given by a Taylor series expansion over

every compact interval, see [6], [25] for more details.

From the Hausdorff-Young Theorem, one can observe that

if {sn} is a sequence of functions converging, in L2(R)
sense, to s. Then, the Fourier transforms of sn converge, in
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L2(R) sense, to the Fourier transform of s, see [17] for more

details. Using [13]’s method, [12] showed that most of the

common distributions do have characteristic functions that can

be extend to meromorphic functions.

The following from [16], [21] recalls Hausdorff-Young

inequality for the Laplace transform:

Lemma 1. Suppose h(·) is a given and nonnegative function
that f ∈ L1(R+) ∩ L2(R+). Then, ||h||2 ≤ 1√

π
||L(h)||2, where

L(h) stands for the Laplace transform.

The Schwarz integrability condition states that in situation

that all partial derivatives of a bivariate function exist and are

continuous, one may change order of partial derivatives, see

[4] for more details.

The following lemma provides useful results for the next

section.

Lemma 2. Suppose k(·) is a given and differentiable function
and y(·) is an unknown function that satisfy∫ x

0

y(t)

(
n∑

i=1

ωiμie
−μi(x−t)

)
dt = k(x), x ≥ 0, (5)

where ωi, μi and μi are some given and nonnegative
constants. Then, the above integral equation can be
transformed into differential equation

0 =

n∑
i=1

ωiμiy
(n−1)(x) +

n∑
i=1

n∑
i �=i

ωiμiμjy
(n−2)(x)

−
n∑

i=1

n∑
i �=i

n∑
k>j, �=i

ωiμiμjμky
(n−3)(x)

+

n∑
i=1

n∑
i �=i

n∑
k>j, �=i

n∑
l>k, �=i

ωiμiμjμkμly
(n−4)(x)

− · · ·+ (−1)n
n∑

i=1

n∏
j �=i

μjy
(0)(x)

−k(n)(x)−
n∑

i=1

μik
(n−1)(x)−

n∑
i=1

n∑
j �=i

μiμjk
(n−2)(x)

−
n∑

i=1

n∑
j �=i

n∑
k>j �=i

μiμjμkk
(n−3)(x)− · · · −

n∏
i=1

μik
(0)(x).

Proof. For n = 1 see [18]. For n > 1, set Ai = ωiμi

and hi(x) =
∫ x

0
y(t) exp{−μi(x − t)}dt. Using the fact that

the nth derivatives hi(x) with respect to x is h
(n)
i (x) =

(−μi)
nhi(x)+

∑n−1
j=0 (−μi)

n−1−jy(j)(x), one may restate all
first n derivatives of (5) as the following system of equation.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k(n)(x) =

n∑
i=1

Ai

[
y(n−1)(x)− μiy

(n−2)(x) + · · ·

+(−μi)
n−1y(0)(x) + (−μi)

nhi(x)
]
,

k(n−1)(x) =

n∑
i=1

Ai

[
y(n−2)(x)− μiy

(n−3)(x) + · · ·

+(−μi)
n−2y(0)(x) + (−μi)

n−1hi(x)
]
,

k(n−2)(x) =

n∑
i=1

Ai

[
y(n−3)(x)− μiy

(n−4)(x) + · · ·

+(−μi)
n−3y(0)(x) + (−μi)

n−2hi(x)
]
,

.

.

.
.
.
.

.

.

.

k(0)(x) =

n∑
i=1

Aihi(x)

Multiplying both sides of the first equation by 1, the second

equation by
∑n

i=1 μi; the third equation by
∑n

i=1

∑n
j>i μiμj ;

the forth equation by
∑n

i=1

∑n
j>i

∑n
k>j>i μiμjμk; and so

on until the last equation which multiplying its both sides

by
∏n

i=1 μi, then adding together all equations leads to the

desired results. �

A. Hyperexponential Distributions

The Hyperexponential (or mixture exponential) distribution

is characterized by the number of n exponential distributions

with means 1/μi and associated wight ωi ∈ R
1 (i.e.∑n

i=1 ωi = 1). The density function for a n−component

Hyperexponential distribution is given by

f∗
X(x) =

n∑
i=1

ωiμie
−μix, x ≥ 0. (6)

Reference [7] showed that one may approximate a large class

of distributions, including several heavy tail distributions such

as Pareto and Weibull distributions, arbitrarily closely, by

Hyperexponential distributions. Reference [8] established that

a survival function at xγ , for all x > 0, is a completely

monotone function if and only if its corresponding density

function is a mixture of Weibull distributions with fixed

shape parameter 1/γ. Reference [9] showed that any Weibull

distribution with shape parameter less than 1 can be restated

as a Hyperexponential distributions.

Using the Hausdorff-Young Theorem, the following

provides error bound for approximating the claim size density

function fX(·) by Hyperexponential density function f∗
X(·),

given by (6).

Lemma 3. Suppose random claim size X is surplus process
(1) has density function fX(·) and characteristic function
θX(·). Moreover, suppose that characteristic function θX(·)
is (or can be extend to) a meromorphic function. Then, (1)
density function of compound sum S(t) =

∑N(t)
i=1 Xi, say

fS(t)(·), can be approximated by density function fS∗(t)(·),
where S(t) =

∑N(t)
i=1 Yi and Yi is a n−component

Hyperexponential distribution; (2) Error bound for such
approximation satisfies ||fS(t) − fS∗(t)||2 ≤ λte−λt||θX − θY ||2,
where θY (s) =

∑n
j=1 ωiμj/(μi + s

√−1).

Proof. Using the Hausdorff-Young Theorem, one may can

conclude that ||fS(t) − fS∗(t)||2 ≤ ||eλt(θX−1) − eλt(θY −1)||2.
The rest of proof arrives by using the fact that ψX and θY

are (or can be extend to) two meromorphic functions. �

III. RUIN PROBABILITY

This section utilizes integro-differential Equations (3) and

(4) to derive an approximate formula for the infinite (and

finite)-time ruin probability of a compound Poisson process

(1). We seek an analytical solution ψ̃(·) which is an

exponential type function. In the other word, we assume:

1The hyperexponential Hn setup falls into the more general framework of
phase-type (PH) approximations. A main step of this article is that would be
to allow the wi in (6) to be negative; maybe this is already implicit in the
paper, but it should be mentioned.

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:11, No:1, 2017 

19International Scholarly and Scientific Research & Innovation 11(1) 2017 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:1
1,

 N
o:

1,
 2

01
7 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
06

19
8/

pd
f



|ψ̃(ω)| ≤ MeT |ω|, ω ∈ C, for some real numbers M and

T in R. If this assumption is not met, as might be the case

if, for example, there are point masses in ψ(·), our method

works, but our error bounds may not be valid any more.

The following theorem provides an (n + 1)−order ODE

for infinite-time ruin probability ψ(·) in the situation that

claim size distribution X has been approximated by an

n−component Hyperexponential density function f∗
X(·).

Theorem 1. Suppose claim size density function fX(·) has
been approximated by an n−component Hyperexponential
density function f∗

X(·). Then, infinite-time survivals probability
ψ̃(·) of a compound Poisson process (1) can be approximated
by infinite-time survivals probability ψ̃∗(·) which can
be evaluated using the following (n + 1)−order ODE.∑n

i=1 λωiμiψ̃
(n−1)
∗ (u) +

∑n
i=1

∑n
i �=i λωiμiμjψ̃

(n−2)
∗ (u) −∑n

i=1

∑n
i �=i

∑n
k>j, �=i λωiμiμjμkψ̃

(n−3)
∗ (u) +∑n

i=1

∑n
i �=i

∑n
k>j, �=i

∑n
l>k, �=i λωiμiμjμkμlψ̃

(n−4)
∗ (u) +

· · · + (−1)n
∑n

i=1

∏n
j �=i μjψ̃

(0)
∗ (u) −[

λψ̃
(n)
∗ (u)− cψ̃

(n+1)
∗ (u)

]
− ∑n

i=1 μi

[
λψ̃

(n−1)
∗ (u)− cψ̃

(n)
∗ (u)

]
−

∑n
i=1

∑n
j �=i μiμj

[
λψ̃

(n−2)
∗ (u)− cψ̃

(n−1)
∗ (u)

]
−

∑n
i=1

∑n
j �=i

∑n
k>j �=i μiμjμk

[
λψ̃

(n−3)
∗ (u)− cψ̃

(n−2)
∗ (u)

]
−

· · · − ∏n
i=1 μi

[
λψ̃

(0)
∗ (u)− cψ̃

(1)
∗ (u)

]
,= 0 with boundary

conditions that satisfy cψ̃
(m)
∗ (0) − λψ̃

(m−1)
∗ (0) +

λ
∑m−2

j=0 ψ̃
(j)
∗ (0)f (m−2−j)(0) = 0, for m = 1, · · · , n.

Proof. An application of Lemma (2) by changing k(u) �→
−cψ̃

(1)
∗ (u) + λψ̃∗(u), y(u) �→ ψ̃∗(u), and ωi �→ λωi lead to

the desired result. �
Using the fact that ψ̃∗(0) = 1 − λE(X)/c, (see [10], p.

104) the above boundary condition equation leads to:

ψ̃
(1)
∗ (0) = ψ̃∗(0)

λ

c
,

ψ̃
(2)
∗ (0) = ψ̃∗(0)

[
(
λ

c
)
2 − (

λ

c
)fX (0)

]
,

ψ̃
(3)
∗ (0) = ψ̃∗(0)

[
(
λ

c
)
3 − 2fX (0)(

λ

c
)
2 − (

λ

c
)f

(1)
X

(0)

]
,

ψ̃
(4)
∗ (0) = ψ̃∗(0)

[
(
λ

c
)
4 − 3fX (0)(

λ

c
)
3

+ (
λ

c
)
2
[−2f

(1)
X

(0) + f
2
X (0)]

−(
λ

c
)f

(2)
X

(0)

]
,

ψ̃
(5)
∗ (0) = ψ̃∗(0)

[
(
λ

c
)
5 − 4(

λ

c
)
4
fX (0) + (

λ

c
)
3
[−3f

(1)
X

(0) + 3f
2
X (0)]

+(
λ

c
)
2
[−2f

(2)
X

(0) + 2fX (0)f
(1)
X

(0)] − (
λ

c
)f

(3)
X

(0)

]
,

ψ̃
(6)
∗ (0) = ψ̃∗(0)

[
(
λ

c
)
6 − 5(

λ

c
)
5
fX (0) + (

λ

c
)
4
[6f

2
X (0) − 4f

(1)
X

(0)]

+(
λ

c
)
3
[−3f

(2)
X

(0) + 6fX (0)f
(1)
X

(0) − f
3
X (0)]

]

+ψ̃∗(0)

[
(
λ

c
)
2
[2f

(3)
X

(0) + 2fX (0)f
(2)
X

(0) + f
(1)
X

(0)f
(1)
X

(0)]

−(
λ

c
)f

(4)
X

(0)

]
,

ψ̃
(7)
∗ (0) = ψ̃∗(0)

[
(
λ

c
)
7 − 6(

λ

c
)
6
fX (0) + (

λ

c
)
5
[10f

2
X (0) − 5f

(1)
X

(0)]

+(
λ

c
)
4
[−4f

(2)
X

(0) + 7fX (0)f
(1)
X

(0) − 4f
(3)
X

(0)]

]

+ψ̃∗(0)(
λ

c
)
3
[
2f

(3)
X

(0) + 2fX (0)f
(1)
X

(0) + 3f
(1)
X

(0)f
(1)
X

(0)

−f
(3)
X

(0) + 4fX (0)f
(2)
X

(0) − 3f
2
X (0)f

(1)
X

(0)

]

+ψ̃∗(0)

[
(
λ

c
)
2
[−2f

(4)
X

(0) + fX (0)f
(3)
X

(0) + 2f
(1)
X

(0)f
(2)
X

(0)

+f
(3)
X

(0)] − (
λ

c
)f

(5)
X

(0)

]

and so on.

The following provides error bound for approximating

infinite-time survivals probability ψ̃(·) by ψ̃∗(·).
Theorem 2. Suppose claim size density function fX(·) has
been approximated by an n−component Hyperexponential
density function f∗

X(·). Then, the infinite-time survival
probability ψ̃(u) of compound Poisson process (1) can be
approximated by ψ̃∗(u), given by Theorem (1), and its error
satisfies ||ψ(u) − ψ∗(u)||2 ≤ cλψ̃(0)√

πa2
1

∣∣∣∣∣∣ϕX(s)−∑n
j=1

ωiμi
μi+s

∣∣∣∣∣∣
2
,

where a1 = sup{ϕX(s),
∑n

j=1
ωiμi

μi+s} and ϕX(s) stands for
the characteristic function of random claim X.

Proof. Application of the Hausdorff-Young for Laplace
transform (Lemma 1) along with fact that L(g′(x);x; s) =
sL(g(x);x; s) − g(0) and L(∫ x

0
(g(x − y)f(y)dy;x; s) =

L(g(x);x; s)L(f(x);x; s), one may conclude that

||ψ(u)− ψ∗(u)||2 ≤ 1√
π
||L(ψ̃)− L(ψ̃∗)||2

=
1√
π

∣∣∣∣∣
∣∣∣∣∣ cψ̃(0)

cu− λ+ λL(f) − cψ̃(0)

cu− λ+ λL(f∗)

∣∣∣∣∣
∣∣∣∣∣
2

.

Application of inequality ||1/h1 − 1/h2||2 ≤ a−2||h1 − h2||2,
where a = sup{h1, h2}, from [11] completes the desired

proof. �
The following theorem provides an (n+1)−order PDE for

finite-time ruin probability ψ(·) in the situation that claim size

distribution X has been approximated by an n−component

Hyperexponential distribution function.

Theorem 3. Suppose claim size density function fX(·) has
been approximated by an n−component Hyperexponential
density function f∗

X(·). Then, finite-time survivals probability
ψ̃(u;T ) of a compound Poisson process (1) can be
approximated by finite-time survivals probability ψ̃∗(u;T )
which can be evaluated using the following (n + 1)−order
PDE.

0 =
n∑

i=1

λωiμi
∂n−1

∂un−1
ψ̃∗(u;T ) +

n∑
i=1

n∑
i �=i

λωiμiμj
∂n−2

∂un−2
ψ̃∗(u;T )

−
n∑

i=1

n∑
i �=i

n∑
k>j, �=i

λωiμiμjμk

∂n−3

∂un−3
ψ̃∗(u;T )

+
n∑

i=1

n∑
i �=i

n∑
k>j,�=i

n∑
l>k, �=i

λωiμiμjμkμl

∂n−4

∂un−4
ψ̃∗(u;T )

− · · · + (−1)
n

n∑
i=1

n∏
j �=i

μj
∂0

∂u0
ψ̃∗(u;T )

−
⎡
⎣λ ∂n

∂un
ψ̃∗(u;T ) − c

∂n+1

∂un+1
ψ̃∗(u;T ) + c

∂n+1

∂T∂un
ψ̃∗(u;T )

⎤
⎦

−
n∑

i=1

μi

⎡
⎣λ ∂n−1

∂un−1
ψ̃∗(u;T ) − c

∂n

∂un
ψ̃∗(u;T ) + c

∂n

∂T∂un−1
ψ̃∗(u;T )

⎤
⎦

−
n∑

i=1

n∑
j �=i

μiμj

⎡
⎣λ ∂n−2

∂un−2
ψ̃∗(u;T ) − c

∂n−1

∂un−1
ψ̃∗(u;T )

+c
∂n−1

∂T∂un−2
ψ̃∗(u;T )

⎤
⎦

−
n∑

i=1

n∑
j �=i

n∑
k>j �=i

μiμjμk

⎡
⎣λ ∂n−3

∂un−3
ψ̃∗(u;T ) − c

∂n−2

∂un−2
ψ̃∗(u;T )

+c
∂n−2

∂T∂un−3
ψ̃∗(u;T )

⎤
⎦

− · · · −
n∏

i=1

μi

⎡
⎣λ ∂0

∂u0
ψ̃∗(u;T ) − c

∂1

∂u1
ψ̃∗(u;T ) + c

∂1

∂T1
ψ̃∗(u;T )

⎤
⎦ ,

where ψ̃
(n)
∗ (0;T ) = limu→0

∂n

∂un ψ̃∗(u;T ) and boundary
conditions that satisfy cψ̃

(m)
∗ (0;T ) − c ∂

∂T ψ̃
(m−1)
∗ (0;T ) −

λψ̃
(m−1)
∗ (0;T ) + λ

∑m−2
j=0 ψ̃

(j)
∗ (0;T )f

(n−2−j)
X (0) = 0, for

m = 1, · · · , n.
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Proof. Using partial integro-differential equation (4) and

the Schwarz integrability condition, one may change order

of differentiation and obtain the above recursive formula

for boundary conditions. An application of Lemma (2) by

changing k(u) �→ −c ∂
∂u ψ̃∗(u;T ) + c ∂

∂T ψ̃∗(u;T ) + λψ̃∗(·),
y(u) �→ ψ̃∗(u;T ), and ωi �→ λωi lead to the desired result. �

Using the fact that ψ̃∗(u; 0) = 1, ψ̃∗(0;T ) =∫ cT

0
FS,T (x)dx/(cT ), and FS,T (x) = P (

∑N(T )
j=1 Xj ≤ x), for

all x ∈ R
+ (see [3], p. 121). One may compute the following

from boundary conditions from recursive formula given by
Theorem (3).

ψ̃
(1)
∗ (0;T ) =

λ

c
ψ̃∗(0;T ) +

∂

∂T
ψ̃∗(0;T ),

ψ̃
(2)
∗ (0;T ) = ψ̃∗(0;T )

[
(
λ

c
)
2 − (

λ

c
)fX (0)

]
+

∂

∂T
ψ̃
(1)
∗ (0;T ),

ψ̃
(3)
∗ (0;T ) = ψ̃∗(0;T )

[
(
λ

c
)
3 − 2fX (0)(

λ

c
)
2 − (

λ

c
)f

(1)
X

(0)

]

+
∂

∂T
ψ̃
(2)
∗ (0;T ),

ψ̃
(4)
∗ (0;T ) = ψ̃∗(0;T )

[
(
λ

c
)
4 − 3fX (0)(

λ

c
)
3

+(
λ

c
)
2
[−2f

(1)
X

(0) + f
2
X (0)] − (

λ

c
)f

(2)
X

(0)

]

+
∂

∂T
ψ̃
(3)
∗ (0;T ),

ψ̃
(5)
∗ (0;T ) = ψ̃∗(0;T )

[
(
λ

c
)
5 − 4(

λ

c
)
4
fX (0)

+(
λ

c
)
3
[−3f

(1)
X

(0) + 3f
2
X (0)] + (

λ

c
)
2
[−2f

(2)
X

(0)

+2fX (0)f
(1)
X

(0)] − (
λ

c
)f

(3)
X

(0)

]
+

∂

∂T
ψ̃
(4)
∗ (0;T ),

ψ̃
(6)
∗ (0;T ) = ψ̃∗(0;T )

[
(
λ

c
)
6 − 5(

λ

c
)
5
fX (0)

+(
λ

c
)
4
[6f

2
X (0) − 4f

(1)
X

(0)]

+(
λ

c
)
3
[−3f

(2)
X

(0) + 6fX (0)f
(1)
X

(0) − f
3
X (0)]

]

+ψ̃∗(0;T )

[
(
λ

c
)
2
[2f

(3)
X

(0) + 2fX (0)f
(2)
X

(0)

+f
(1)
X

(0)f
(1)
X

(0)] − (
λ

c
)f

(4)
X

(0)

]
+

∂

∂T
ψ̃
(5)
∗ (0;T ),

ψ̃
(7)
∗ (0;T ) = ψ̃∗(0;T )

[
(
λ

c
)
7 − 6(

λ

c
)
6
fX (0)

+(
λ

c
)
5
[10f

2
X (0) − 5f

(1)
X

(0)]

+(
λ

c
)
4
[−4f

(2)
X

(0) + 7fX (0)f
(1)
X

(0) − 4f
(3)
X

(0)]

]

+ψ̃∗(0;T )(
λ

c
)
3
[
2f

(3)
X

(0) + 2fX (0)f
(1)
X

(0)

+3f
(1)
X

(0)f
(1)
X

(0) − f
(3)
X

(0) + 4fX (0)f
(2)
X

(0)

−3f
2
X (0)f

(1)
X

(0)

]

+ψ̃∗(0;T )

[
(
λ

c
)
2
[−2f

(4)
X

(0) + fX (0)f
(3)
X

(0)

+2f
(1)
X

(0)f
(2)
X

(0) + f
(3)
X

(0)] − (
λ

c
)f

(5)
X

(0)

]

+
∂

∂T
ψ̃
(6)
∗ (0;T ),

where ψ̃
(n)
∗ (0;T ) = limu→0

∂n

∂un ψ̃∗(u;T ).
Using the central limit theorem for compound sum

N(t)∑
i=1

Xi (see [10], §2.5, or [22], §1.9), one may provide

the following approximation for expression ψ̃∗(0;T ) =∫ cT

0
FS,T (x)dx/(cT )

ψ̃∗(0;T ) ≈ 1

cT

∫ cT

0

Φ

(
x− λTm1√

λTm2

)
dx,

where mi = E(Xi), for i = 1, 2, and Φ(·) stands

for cumulative distribution function for standard normal

distribution, see [10], §2.5 ,or [22], §1.9, for other parametric

approximation approaches and [19] for a nonparametric

approximation approach. For heavy tailed random claim size

X that the ordinary central limit theorem does not work

properly. One has to employ an appropriated version of the

central limit theorem, see [20], [5], among others, for more

details.

The following provides error bound for approximating

finite-time survivals probability ψ̃(u;T ) by ψ̃∗(u;T ).

Theorem 4. Suppose claim size density function fX(·) has
been approximated by an n−component Hyperexponential
density function f∗

X(·). Then, the infinite-time survival
probability ψ̃(u;T ) of compound Poisson process (1) can be
approximated by ψ̃∗(u;T ), given by Theorem (3), and its error
satisfies

||Error||2 ≤ λ√
π

[
− cψ̃(0;T )

a21
+

a2T

c
− cψ̃(0;T )a21a

2
2a3

]

×
∣∣∣∣∣∣
∣∣∣∣∣∣ϕX(s)−

n∑
j=1

ωiμi

μi + s

∣∣∣∣∣∣
∣∣∣∣∣∣
2

,

where Error = ψ(u;T ) − ψ∗(u;T ), a1 =
sup{ϕX(s),

∑n
j=1

ωiμi

μi+s}, a2 = sup{1/s − c/A(s), 1/s −
c/A∗(s)}, a2 = sup{eA(s)/cT , eA∗(s)/cT }, A(s) =
cs − λ + λϕX(s), A∗(s) = cs − λ + λ

∑n
j=1 ωiμi/(μi + s),

and ϕX(s) stands for the characteristic function of random
claim X.

Proof. Taking the Laplace transform from both sides of (4)

leads to the following first-order PDE

A(s)L(ψ̃(u;T );u; s)− cψ̃(0;T )− c
∂

∂T
L(ψ̃(u;T );u; s) = 0,

where L(ψ̃(u; 1);u; s) = 1/s. Therefore, the Laplace

transform of finite-time ruin probability for compound Poisson

process (1) is

L(ψ̃(u;T );u; s) =
cψ̃(0;T )

A(s)
+

(
1

s
− cψ̃(0;T )

A(s)

)
eA(s)/cT .

The above finding along with an application of the
Hausdorff-Young for Laplace transform (Lemma 1) lead to

||E||2 ≤
1

√
π

||L(ψ̃(u;T );u; s) − L(ψ̃∗(u;T );u; s)||2

=
1

√
π

∣∣∣∣∣
∣∣∣∣∣
cψ̃(0;T )

A(s)
+

(
1

s
−

cψ̃(0;T )

A(s)

)
e
A(s)/cT

−
cψ̃(0;T )

A∗(s)
−
(

1

s
−

cψ̃(0;T )

A∗(s)

)
e
A∗(s)/cT

∣∣∣∣∣
∣∣∣∣∣
2

≤
cψ̃(0;T )
√

πa2
1

||A(s) − A∗(s)||2 +
b

√
π

∣∣∣∣∣
∣∣∣∣∣
TA(s)

c
−

TA∗(s)

c

∣∣∣∣∣
∣∣∣∣∣
2

+
b

√
π

∣∣∣∣∣
∣∣∣∣∣ln(

1

s
−

cψ̃(0;T )

A(s)
) − ln(

1

s
−

cψ̃(0;T )

A∗(s)
)

∣∣∣∣∣
∣∣∣∣∣
2

,

where E = ψ(u;T )−ψ∗(u;T ), the second inequality arrives

by application of inequality ||1/h1 − 1/h2||2 ≤ a−2||h1 −
h2||2, and a = sup{h1, h2}, from [11], triangle inequality,

and the Mean value theorem (i.e., (exp{A(s)/cT + ln( 1s −
cψ̃(0;T )
A(s) )} − exp{A∗(s)/cT + ln( 1s − cψ̃(0;T )

A∗(s)
)})/(A(s)/cT +

ln( 1s − cψ̃(0;T )
A(s) )−A∗(s)/cT − ln( 1s − cψ̃(0;T )

A∗(s)
)) ≤ b where b =

sup{A(s)/cT+ln( 1s− cψ̃(0;T )
A(s) ), A∗(s)/cT+ln( 1s− cψ̃(0;T )

A∗(s)
)}).
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(a) (b)

(c) (d)

Fig. 1 (a) Behavior for approximated infinite-time ruin probability ψ∗(u); (b) Squared error for approximated infinite-time ruin probability ψ∗(u); (c)
Behavior for approximated finite-time ruin probability ψ∗(u;T ), for T = 50, 100, 200; and (d) Squared error for approximated finite-time ruin probability,

for T = 50, 100, 200

Application of inequality || lnh1−lnh2||2 ≤ ||h1−h2||2/a,
where a = sup{h1, h2}, from [11] completes the desired

proof. �

IV. SIMULATION STUDY

Consider compound Poisson process (1) with intensity rate

λ = 1 and premium c = 1.1. This section conducts two

simulation studies to show practical application the about

findings.

Example 1. Suppose random claim X in compound
Poisson process (1) has been distributed according to
Weibull(0.3,9.26053). Reference [7] using a three-moment
matching algorithm showed that density function of random
claim X can be approximated by the following 2-component

Hyperexponential density function

f∗
X(x) = 0.000095e−0.019x + 1.348225e−1.355x. (7)

For infinite-time ruin probability: Application of Theorem

(1) leads to the following second order ODE

1.1ψ̃
(3)
∗ (u) + 0.5114ψ̃

(2)
∗ (u) + 0.0026395ψ̃

(1)
∗ (u) = 0

with initial conditions ψ̃∗(0) = 0.0909090909, lim
u→0

ψ̃
(1)
∗ (u) =

0.08264462809, and lim
u→0

ψ̃
(2)
∗ (u) = −0.03629992491.

Solving the above ODE, one may approximate finite-time

survival probability ψ̃(u) of compound Poisson process (1)

by ψ̃∗(u) = 0.9974815963−0.2101123939e−0.01502369720u−
0.2873692025e−0.8589763028u.

Figs. 1 (a) and (b) illustrate behavior for such approximated

infinite-time ruin probability and its corresponding squared
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(a) (b)

(c) (d)

Fig. 2 (a) Behavior for approximated infinite-time ruin probability ψ∗(u); (b) Squared error for approximated infinite-time ruin probability ψ∗(u); (c)
Behavior for approximated finite-time ruin probability ψ∗(u;T ), for T = 50, 100, 200; and (d) Squared error for approximated finite-time ruin probability,

for T = 50, 100, 200

error, respectively. Such error has been evaluated by

substitution approximated infinite-time ruin probability in

integro-differential equation (3).

For finite-time ruin probability: Application of Theorem (3)

leads to the following PDE 1.1 ∂3

∂u3 ψ̃∗(u;T )+0.5114 ∂2

∂u2 ψ̃∗(u;T )−
0.0539995 ∂1

∂u1 ψ̃∗(u;T )− 1.1 ∂3

∂u2∂T
ψ̃∗(u;T )− 1.5114 ∂2

∂u∂T
ψ̃∗(u;T )−

0.0283195 ∂
∂T

ψ̃∗(u;T ) = 0with initial conditions ψ̃∗(u, 0) =

0, ψ̃∗(0;T ) = β(T ), lim
u→20

ψ̃∗(u;T ) = 1, lim
u→0

∂

∂u
ψ̃∗(u;T ) =

0.9091β(T ) +
∂

∂T
β(T ), where β(T ) = 1

1.1T

∫ 1.1T
0 Φ

(
x−T√
29.36T

)
dx.

Solving the above PDE, one may approximate finite-time

survival probability ψ̃(u;T ) of compound Poisson process (1)

by ψ̃∗(u;T ), that its behavior (for T = 50, 100, 200) has been

illustrated in Fig. 2 (c). Fig. 2 (d) illustrates squared error of

our approximation (for T = 50, 100, 200).

As one may observe, our squared error is less than 0.0025

and 0.025, for approximating infinite-time and finite-time

ruin probability, respectively. Such error maybe reduced by

increasing number of component in Hyperexponential density

function.

Example 2. Suppose random claim X in compound
Poisson process (1) has been distributed according to
Gamma(0.7310,1). Reference [24] using the Padé approximant
method showed that density function of random claim X
can be approximated by by the following 3-component
Hyperexponential density function

f∗
X(x) = 0.8099e−3.2398x + 0.3616e−1.4465x

+0.5198e−1.0396x. (8)

For infinite-time ruin probability: Application of Theorem

(1) leads to the following second order ODE 1.1ψ̃
(4)
∗ (u) +
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5.29849ψ̃
(3)
∗ (u)+ 6.479507012ψ̃

(2)
∗ (u)+ 1.797919457ψ̃

(1)
∗ (u) = 0with

initial conditions ψ̃∗(0) = 0.3354861821, lim
u→0

ψ̃
(1)
∗ (u) =

0.3049874383, lim
u→0

ψ̃
(2)
∗ (u) = −0.2385743202, and lim

u→20
ψ̃∗(u) = 1.

Solving the above ODE, one may approximate infinite-time

survival probability ψ̃(u) of compound Poisson process (1)

by ψ̃∗(u) = 1 − 0.013037e−3.073097u − 0.008568e−1.349630u −
0.642908e−0.394082u. Figs. 2 (a) and (b) illustrate behavior

for such approximated infinite-time ruin probability and its

corresponding squared error, respectively. Such error has

been evaluated by substitution approximated infinite-time ruin

probability in integro-differential equation (3).

For finite-time ruin probability: Application

of Theorem (3) leads to the following PDE

1.1 ∂4

∂u4 ψ̃∗(u;T ) + 5.29849 ∂3

∂u3 ψ̃∗(u;T ) + 6.479507012 ∂2

∂u2 ψ̃∗(u;T ) +

1.797919457 ∂
∂u

ψ̃∗(u;T ) − 5.359146 ∂
∂T

ψ̃∗(u;T ) −
10.5141 ∂2

∂u∂T
ψ̃∗(u;T )−6.2985 ∂3

∂u2∂T
ψ̃∗(u;T )−1.1 ∂4

∂u3∂T
ψ̃∗(u;T ) =

0 with initial conditions ψ̃∗(u, 0) = 0, ψ̃∗(0;T ) = β(T ),

lim
u→20

ψ̃∗(u;T ) = 1, lim
u→0

∂

∂u
ψ̃∗(u;T ) = 0.9091β(T ) +

∂

∂T
β(T ),

lim
u→0

∂

∂u
ψ̃∗(u;T ) = −0.71113β(T ) + 0.9091

∂

∂T
β(T ) +

∂2

∂T 2
β(T ),where β(T ) = 1

1.1T

∫ 1.1T

0
Φ
(

x−0.7309651999T√
0.7309651995T

)
dx.

Solving the above PDE, one may approximate finite-time

survival probability ψ̃(u;T ) of compound Poisson process (1)

by ψ̃∗(u;T ), that its behavior (for T = 50, 100, 200) has been

illustrated in Fig. 2 (c). Fig. 2 (d) of illustrates squared error

of our approximation (for T = 50, 100, 200).

As one may observe, our squared error is less than 0.00025
and 0.005, for approximating infinite-time and finite-time

ruin probability, respectively. Such error maybe reduced by

increasing number of component in Hyperexponential density

function.

It worthwhile to mention that: A given density function

(or a density function corresponding to a given data set) can

be approximated by a Hyperexponential distribution using a

Matlab package called “bayesf”, see [23] for more details.

V. CONCLUSION AND SUGGESTIONS

This article approximates claim size density function fX(·)
by a n−component Hyperexponential density function f∗

X(·).
Then, it restates the problem of finding an infinite-time (or

finite-time) ruin probability as a (n + 1)−order ordinary

differential equation (or a partial differential equation for

finite-time ruin probability). Application of our findings has

been given though a simulation study.
Certainly the following generalized Hyperexponential

distribution can be provided a more accurate approximation in
the situation that the true density function (or recorded data)
has more than one mode.

gGHE
X (x) =

n∑
i=1

ωiμie
−μi(x−bi)I[bi,∞)(x). (9)

In such situation the finite and infinite ruin probabilities can

be evaluated using the following lemma.

Lemma 4. Suppose claim size density function fX(·) has been
approximated by generalized Hyperexponential distribution
gGHE
X (·). The survival probability can be found by the

following two inverse Laplace transforms.

(i) The Laplace transform of the infinite-time survival
probability can be found by the following equation

L
(
ψ̃(u);u; s

)
=

cψ̃(0)

cs− λ+ λ
∑k

i=1
ωiμi
μi+s

e−sbi

(ii) The Laplace transform of the finite-time survival
probability can be found by the following equation

L
(
ψ̃(u;T );u; s

)
=

cψ̃(0;T )

A∗∗(s)
+

(
1

s
−

cψ̃(0;T )

A∗∗(s)

)
e
A∗∗(s)/cT

,

where A∗∗(s) = cs− λ+ λ
∑k

i=1
ωiμi

μi+se
−sbi .

Proof. The desired result arrives by taking a Laplace

transform from both sides of equations (3) and (4) and solving

corresponding first-order PDE with boundary condition

ψ̃(u; 0) = 1 or L(ψ̃(u; 0);u; s) = 1/s. �
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