Investigation of Dynamic Mechanical Properties of Jute/Carbon Reinforced Composites
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
Investigation of Dynamic Mechanical Properties of Jute/Carbon Reinforced Composites

Authors: H. Sezgin, O. B. Berkalp, R. Mishra, J. Militky

Abstract:

In the last few decades, due to their advanced properties, there has been an increasing interest in hybrid composite materials. In this study, the effect of different stacking sequences of jute and carbon fabric plies on dynamic mechanical properties of composite laminates were investigated. Vacuum bagging system was used to fabricate the composite samples. Each composite laminate was reinforced with two plies of jute fabric and two plies of carbon fabric by varying the position of layers. Dynamic mechanical analyzer (DMA) was used to examine the dynamic mechanical properties of composite laminates with increasing temperature. Results showed that the composite sample, which has carbon fabric at the outer layers, has the highest storage and loss modulus. Besides, it was observed that glass transition temperature (Tg) of samples are close to each other and at about 75 °C.

Keywords: Differential scanning calorimetry dynamic mechanical analysis, textile reinforced composites, thermogravimetric analysis.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1128263

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781

References:


[1] V. Mishra, and S. Biswas, “Physical and mechanical properties of bi-directional jute fiber epoxy composites,” Procedia Eng., vol. 51, pp. 561–566, 2013.
[2] S. V. Joshi, L. T. Drzal, A. K. Mohanty, and S. Arora, “Are natural fiber composites environmentally superior to glass fiber reinforced composites,” Composites Part A, vol. 35, pp. 371- 376, 2004.
[3] A. Demir, Y. Seki, E. Bozaci, M. Sarikanat, S. Erden, K. Sever and E. Ozdogan, “Effect of the atmospheric plasma treatment parameters on jute fabric: the effect on mechanical properties of jute fabric/polyester composites,” J. Appl. Polym. Sci.,vol. 121, pp. 634-638, 2011.
[4] A. K. Mohanty, M. A. Khan and G. Hinrichsen, “Surface modification of jute and its influence on performance of biodegradable jute-fabric/biopol composites,” Compos. Sci Technol., vol. 60, pp. 1115-1124, 2000.
[5] G. Raghavendra, K. A. Kumar, M. H. Kumar, B. Raghukumar and S. Ojha, “Moisture absorption behavior and its effect on the mechanical properties of jute-reinforced epoxy composite,” Polym. Compos., doi: 10.1002/pc.23610, 2015.
[6] M. Ramesh, K. Palanikumar, and K. Hemachandra Reddy, “Comparative evaluation on properties of hybrid glass fiber-sisal/jute reinforced epoxy composites,” Procedia Eng., vol. 51, pp. 745-750, 2013.
[7] J. Gassan, and A. K. Bledzki, “The influence of fiber-surface treatment on the mechanical properties of jute-polypropylene composites,” Composites Part A, vol. 28, pp. 1001-1005, 1997.
[8] T. M. Gowda, A. C. B. Naidu, and R. Chhaya, “Some mechanical properties of untreated jute fabric-reinforced polyester composites,” Composites Part A, vol. 30, pp. 277–284, 1999.
[9] K. S. Ahmed, and S. Vijayarangan, “Elastic property evaluation of jute-glass fiber hybrid composite using experimental and CLT approach,” Indian J. Eng. Mater. Sci., vol. 13, pp. 435-442, 2006.
[10] K. S. Ahmed, S. Vijayarangan, A. C. B. Naidu, “Elastic properties, notched strength and fracture criterion in untreated woven jute–glass fabric reinforced polyester hybrid composites,” Mater. Des., vol. 28, pp. 2287–2294, 2007.
[11] S. Shahinur, M. Hasan, Q. Ahsan, D. Kumar Saha, and Md. S. Islam, “Characterization on the properties of jute fiber at different portions,” Int. J. of Polym. Sci., vol. 2015, pp. 1-6, 2015.
[12] T. A. Lenda, and S. Mridha, “Influence of moisture absorption on impact strength and failure behavior of hybrid jute-carbon/epoxy composite,” Adv. Mater. Res., vol. 264-265, pp. 457-462, 2011.
[13] K. M. F. Hasan, and M. Islam, “Dynamic mechanical behavior & analysis of the jute-glass fiber reinforced polyester hybrid composites,” Am. J. Appl. Phys., vol. 1, pp. 1-12, 2016.
[14] M. S. Sreekala, J. George, M. G. Kumaran, and S. Thomas, “The mechanical performance of hybrid phenol-formaldehyde-based composites reinforced with glass and oil palm fibres,” Compos Sci Technol., vol. 62, pp. 339–353, 2002.
[15] N. K. Naik, R. Ramasimha, H. Arya H, S. V. Prabhu, and N. ShamaRao, “Impact response and damage tolerance characteristics of glass-carbon/epoxy hybrid composite plates,” Compos Part B, vol. 32, pp. 565–574, 2011.
[16] T. Hamouda, A. H. Hassanin, A. Kilic, Z. Candan, and M. S. Bodur, “Hybrid composites from coir fibers reinforced with woven glass fabrics: physical and mechanical evaluation,” Polym. Compos., doi: 10.1002/pc.23799.
[17] K. S. Pandya, Ch. Veerraju, and N.K. Naik, “Hybrid composites made of carbon and glass woven fabrics under quasi-static loading,” Mater. Des., vol. 32, pp. 4094-4099, 2011.
[18] S. Banerjee, and B. V. Sankar, “Mechanical properties of hybrid composites using finite element method based micromechanics,” Compos Part B, vol. 58, pp. 31-327, 2014.
[19] G. Rajkumar, J. Srinivasan, L. and Suvitha, “Natural protein fiber hybrid composites: Effects of fiber content and fiber orientation on mechanical, thermal conductivity and water absorption properties,” J Ind Text, vol. 44, pp. 709–724, 2015.
[20] F. Su, Z. Zhang, and W. Liu, “Mechanical and tribological properties of carbon fabric composites filled with several nano-particulates,” Wear, vol. 260, pp. 861–868, 2006.
[21] R. Rattan, and J. Bijwe, “Influence of impingement angle on solid particle erosion of carbon fabric reinforced polyetherimide composite,” Wear, vol. 262, pp. 568-574, 2007.
[22] F. Su, Z. Zhang, Kun Wang, W. Jiang, X. Men, and W. Liu, “Friction and wear properties of carbon fabric composites filled with nano-Al2O3 and nano-Si3N4,” Composites: Part A, vol. 37, pp. 1351–1357, 2006.
[23] I. Yalcin, T. Gok Sadikoglu, O. B. Berkalp, and M. Bakkal, “Utilization of various non-woven waste forms as reinforcement in polymeric composites,” Text Res J, vol. 83, pp. 1551–1562, 2013.
[24] R. Murugan, R. Ramesh, K. Padmanabhan, R. Jeyaraam, and S. Krishna, “Experimental investigation on static mechanical properties of glass/carbon hybrid woven fabric composite laminates,” Adv. Mater. Res., vol. 903, pp. 96–101, 2014.
[25] A. Bindal, S. Singh, N. K. Batra, R. Khanna, “Development of glass/jute fibers reinforced polyester composite,” Indian J. Eng. Mater. Sci., vol. 2013 pp. 1–6, 2013.
[26] K. Bilisik, and G. Yolacan, “Short beam strength properties of multistitched biaxial woven E-glass/polyester nano composites,” J. Ind. Text., vol. 45, pp. 199–221, 2015.
[27] M. Idicula, S. K. Malhotra, K. Joseph, and S. Thomas, “Dynamic mechanical analysis of randomly oriented intimately mixed short banana/sisal hybrid fibre reinforced polyester composites,” Compos. Sci. Technol. vol. 65, pp. 1077–1087, 2005.
[28] D. Ray, B. K. Sarkar, S. Das, and A. K. Rana, “Dynamic mechanical and thermal analysis of vinylester-resin-matrix composites reinforced with untreated and alkali-treated jute fibres,” Compos. Sci. Technol., vol. 62, pp. 911–917, 2002.
[29] W. K. Goertzen, and M. R. Kessler, “Dynamic mechanical analysis of carbon/epoxy composites for structural pipeline repair,” Composites Part B, vol. 38, pp. 1–9, 2007.
[30] A. K. Saha, S. Das, D. Bhatta, and B. C. Mitra, “Study of Jute Fiber Reinforced Polyester Composites by Dynamic Mechanical Analysis,” J. Appl. Polym. Sci., vol. 71, pp. 1505–1513, 1999.
[31] S. Yang, J. Taha-Tijerina, V. Serrato-Diaz, K. Hernandez, and K. Lozano, “Dynamic mechanical and thermal analysis of aligned vapor grown carbon nanofiber reinforced polyethylene,” Composites Part B, vol. 38, pp. 228–235, 2007.
[32] Z. Jin, K. P. Pramoda, G. Xu, and S. H. Goh, “Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate) composites,” Chem. Phys. Lett., vol. 337, pp. 43-47, 2001.
[33] J. Gotto, Thermoset Characterization Part 15: Experimental Aspects of Dynamic Mechanical Analysis (DMA), http://polymerinno vationblog.com/thermoset-characterization-part-15-experimental aspects dynamic-mechanical-analysis-dma/.
[34] M. Jawaid, H.P.S. Abdul Khalil, A. Hassan, R. Dungani, and A. Hadiyane, “Effect of jute fibre loading on tensile and dynamic mechanical properties of oil palm epoxy composites,” Composites Part B, vol. 45, pp. 619-624, 2013.
[35] S. S. Tripathy, L. Di Landro, D. Fontanelli, A. Marchetti, and G. Levita, “Mechanical properties of jute fibers and interface strength with an epoxy resin,” J. Appl. Polym. Sci., vol. 75, pp. 1585–1596, 2000.