Equations of Pulse Propagation in Three-Layer Structure of As2S3 Chalcogenide Plasmonic Nano-Waveguides
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32795
Equations of Pulse Propagation in Three-Layer Structure of As2S3 Chalcogenide Plasmonic Nano-Waveguides

Authors: Leila Motamed-Jahromi, Mohsen Hatami, Alireza Keshavarz

Abstract:

This research aims at obtaining the equations of pulse propagation in nonlinear plasmonic waveguides created with As2S3 chalcogenide materials. Via utilizing Helmholtz equation and first-order perturbation theory, two components of electric field are determined within frequency domain. Afterwards, the equations are formulated in time domain. The obtained equations include two coupled differential equations that considers nonlinear dispersion.

Keywords: Nonlinear optics, propagation equation, plasmonic waveguide.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1127186

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1227

References:


[1] D. Pallarola, M. Schneckenburger, J. P. Spatzab and C. Pacholski, Real-time monitoring of electrochemical controlled protein adsorption by a plasmonic nanowire based sensor, Chem. Commun. 49(75) (2013) 8326-8328.
[2] C.C. Hu, Y.T. Tsai, W. Yang, Y.F. Chau, Effective Coupling of Incident Light Through an Air Region into an S-Shape Plasmonic Ag Nanowire Waveguide with Relatively Long Propagation Length, Plasmonics 9(3) (2014) 573-579.
[3] F. Festy, A. Demming, and D. Richards, Resonant excitation of tip plasmons for tip-enhanced Raman SNOM, Ultramicroscopy 100(3) (2004) 437-441.
[4] M.L. Brongersma and P.G. Kik (eds.), Surface Plasmon Nanophotonics, 1st edn. (Springer-Verlage, New York, 2007), pp.143.
[5] S.A. Maier, Plasmonics: Fundamental and applications, 1st edn. (Springer-Verlage, Berlin, 2007), pp.25.
[6] S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits, 1st edn. (Pan Stanford, Singapore, 2009), pp.414.
[7] J. A Dionne, L. A. Sweatlock, H.A. Atwater, and A. Polman, Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization, Phy.Rev. B73(3) (2006) 1-9.
[8] Y. Satuby and M. Orenstein, Surface plasmon polariton waveguides: From multimode stripe to a slot geometry, Appl. Phys. Lett. 90(25) (2007) 251104-251104-3.
[9] E. N. Economou, Surface plasmons in thin films, Phys. Rev. 182(2) (1969) 539-554.
[10] M.R. Lamont, B. Luther-Davies, D.Y. Choi, S. Madden, B.J. Eggleton, Supercontinuum generation in dispersion engineered highly nonlinear (gamma = 10 /W/m) As2S3) chalcogenide planar waveguide, Opt. Express 16 (19) (2008) 14938-14944.
[11] D.I. Yeom, E.C. Mägi, M.R. Lamont, M.A. Roelens, L. Fu, B.J. Eggleton, Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires, Opt. Lett. 33(7) (2008 Apr 1) 660-662.
[12] A. Zakery and S.R. Elliott, Optical nonlinearities in chalcogenide glasses and their applications, 1st edn., (Springer, 2007), pp.2.
[13] E. Yousefi, M. Hatami and A. Torabi Jahromi, All-optical ternary signal processing using uniform nonlinear chalcogenide fiber Bragg gratings, JOSAB 32(7) (2015) 1471-1478.
[14] A.W. Snyder and J. Love, Optical waveguide theory, 1st end., (Chapman and Hall, London, 1983), pp.376.
[15] C. Chaudhari, T. Suzuki, and Y. Ohishi, Design of Zero Chromatic Dispersion Chalcogenide As2S3 Glass Nanofibers, J. Lightwave Technology 27 (12) (2009) 2095-2099