
 
Abstract—On-chip memories consume a significant portion of 

the overall die space and power in modern microprocessors. On-chip 
caches depend on Static Random-Access Memory (SRAM) cells and 
scaling of technology occurring as per Moore’s law. Unfortunately, 
the scaling is affecting stability, performance, and leakage power 
which will become major problems for future SRAMs in aggressive 
nanoscale technologies due to increasing device mismatch and 
variations. 3T1D Dynamic Random-Access Memory (DRAM) cell is 
a non-destructive read DRAM cell with three transistors and a gated 
diode. In 3T1D DRAM cell gated diode (D1) acts as a storage device 
and also as an amplifier, which leads to fast read access. Due to its 
high tolerance to process variation, high density, and low cost of 
memory as compared to 6T SRAM cell, it is universally used by the 
advanced microprocessor for on chip data and program memory. In 
the present paper, it has been shown that 3T1D DRAM cell can 
perform better in terms of fast read access as compared to 6T, 4T, 3T 
SRAM cells, respectively. 
 

Keywords—DRAM cell, read access time, tanner EDA tool write 
access time and retention time, average power dissipation. 

I. INTRODUCTION 

YNAMIC Random-Access Memory (DRAM) is widely 
used in commercial and industrial applications and 

popularity of DRAM is making it a leading technology driver, 
with increasing pressure to reduce cost per bit with higher 
densities, higher speed, and low power dissipation. This also 
makes DRAM a good candidate to study the technology 
scaling effects on reliability. As the technology scales down, it 
results in high performance, but at the same time, it degrades 
the reliability of the DRAM memory array [5].  

On-chip caches depend on SRAM cells. There is a direct 
impact of scaling on stability, performance, and leakage 
power. Therefore, it has been seen as a major property for the 
future SRAMs at nanoscale level because of device mismatch 
and variations at large scale.  

One simple solution for the above problems is to slow down 
scaling of SRAMs at the expense of lower performance and 
larger area. However, this would mean the end of Moore’s 
Law scaling of transistor for high density and speed for the 
future processor designs. To avoid these scaling limitations, 
recent research has turned to alternative designs that can 
replace the 6T SRAM cell. One such design is that of 3T1D 
DRAM, which gives operating speed comparable to that of 
SRAM without the destructive reads as in the standard 1T1C 
DRAM cell. Furthermore, 3T1D does not depend on matched 
transistor strengths, so its reliability is not affected by process 
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variations in the same way that the 6T SRAM cell stability is 
affected. 

Recent research indicates that 3T1D DRAM cell can be 
used in the place of 6T SRAM cell, such as L1 caches, with 
negligible performance loss [1]. The term dynamic stands for 
its leakage phenomenon which degrades the charge stored in 
the memory cell with the time, i.e. it needs periodic 
refreshment in order to retain the data. Retention time can be 
defined as the duration up to which the stored signal can be 
read from the memory cell. The longer the retention time, the 
smaller the total leakage current with the memory cell. 

In this paper, we have taken three different DRAM cells 
such as 4T 3T and 3T1D. Read and write operations are 
performed for storing a single bit in memory. By using T-
Spice Tanner EDA tool, analysis of performance DRAM cells 
are performed and compared at 250 nm technology. 

II. THE 3T1D DRAM CELL 

In 3T1D DRAM Cell, parasitic gate capacitance of gated 
diode (D1) and that of read device T2 form the storage node 
capacitance. Data are written to storage node through T1 
(write device) and data are read from storage node through T2 
(read device) and T3 (read select device).  

The gated diode is a semiconductor device which combines 
the function of a p-n junction and a MOS capacitor. The gated 
diode is characterised by a very high power amplification 
gain. Considering the high input impedance and low output 
impedance, the gate-controlled diode acts as a voltage-
controlled voltage source. [4] 

As shown in Fig. 1, the parasitic gate capacitance of the 
gated diode (D1) is acting as the storage node capacitor, and it 
is connected via a writing device (T1) to BitlineWrite forming 
the write path. A read device (T2) and a read select device 
(T3) are connected in series, between the BitlineRead and GND, 
forming the read path. Both read and write paths are 
decoupled, so operation is independent of the matched 
transistor ratio as in case of 6T SRAM cell. Data are written 
and stored in gated diode (D1) as inversion charge for 1-data, 
and no charge for 0-data. BitlineWrite and BitlineRead form a 
dual port cell, or they can be tied together for a single port 
cell. 

A. Operation 

By raising WordLineWrite high and holding WordLineRead 
low, data are written into the storage node from BitLineWrite 
via T1, by providing 0 V for 0-data and high for 1-data. For 
reading, BitLineRead is previously precharged to high and 
WordLineRead is pulsed from GND to high. For read 1, the 
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