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Alternative Computational Arrangements on g-Group
(g > 2) Profile Analysis

Emmanuel U. Ohaegbulem, Felix N. Nwobi

Abstract—Alternative and simple computational arrangements in
carrying out multivariate profile analysis when more than two groups
(populations) are involved are presented. These arrangements have
been demonstrated to not only yield equivalent results for the test
statistics (the Wilks lambdas), but they have less computational
efforts relative to other arrangements so far presented in the
literature; in addition to being quite simple and easy to apply.

Keywords—Coincident profiles, g-group profile analysis, level
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1. INTRODUCTION

HE term ‘repeated measures’ refers to multiple responses

(observations) taken sequentially on the same subjects or
processes with respect to a particular variable of interest. The
set of variables may be a test battery that is administered to
evaluate psychological traits or vocational skills in the social
sciences. In the industrial setting, a process may be evaluated
over several experimental conditions (treatments). If the
repeated measures factor is quantitative (e.g., time), then
Profile Analysis can provide an elegant interpretation of the
data [1].

The term ‘profile’ comes from practice in applied work in
which scores on a test battery are plotted in terms of graph or
profile [2]. A profile can be thought of as a broken line that
graphically joins interdependent observations — which are
measured on the same experimental unit. An average profile
consists of the average of the responses within each
observational level. Profile analysis compares these average
profiles from two or more populations (treatment groups).

Profile analysis is a specific style of Multivariate Analysis
of Variance (MANOVA) (see, for example, [3]). It is a special
application of MANOVA to repeated measures data; and it is
otherwise referred to as Repeated Measures MANOVA (see,
for example, [4]). Simply put, profile analysis is a stage-wise
fashion of testing for equality of mean vectors between two or
among more than two populations.

Ordinarily, in comparing more than two populations as in
normal MANOVA, the populations mean vectors of the
variable of interest are tested for equality. In profile analysis,
however, the test for equality of population mean vectors is
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divided into several specific possibilities (see, for example,

[5]). The primary hypothesis is;

(a) The populations mean profiles are parallel (that is, the
profiles are similar).

Two other hypotheses that are contingent on this primary
hypothesis are;

(b) The profiles are coincident (that is, the profiles are
identical or superimposed)

(c) The profiles are level/horizontal/flat (that is, all the means
are equal to the same constant).

This third hypothesis concerns the similarity of responses in
all observation levels, independent of populations. It is
typically relevant only if the profiles are parallel. If the
profiles are not parallel, then at least one of them is
necessarily not flat. Again, this third hypothesis is somewhat
contingent on the second hypothesis being true.

The procedures of carrying out profile analysis with regard
to the one-group and the two-group profile analyses (for both
the univariate and multivariate contexts) have been established
in the literature (see, for example, [5], [6]). Also, profile
analysis has been carried out for more than two groups in the
multivariate context, especially for three groups (see, for
example, [3], [7]). However, the computational arrangements
in the profile analysis (especially in the multivariate context
when more than two groups are considered) are obviously
cumbersome to most people (analysts); as the arrangements
are somehow ambiguous and quite lengthy. For instance, the
rationale for the choices of some of the matrices (like C and 4;
as used in [6]) are often not clear and probably arbitrary. More
so, the computational arrangements for arriving at the values
of the test statistics (in most cases, Wilk’s lambda) for the
three different hypotheses testing are quite cumbersome and
lengthy, especially when the number of groups and number of
variables increase.

This paper presentation, therefore, proposes alternative,
simple, and direct computational arrangements in carrying out
profile analysis for more than two groups in the multivariate
context. It is a further improvement on [8] in the area of
computational arrangements. This presentation will be
referencing the data extracted from [9] as were also used in [7]
in order to show that the alternative computational
arrangements give equivalent results as the arrangements in
[7].

We present in the next section the proposed arrangements
aimed at reducing the computational complexities of the
classical methods. Section III is devoted to a numerical
example to demonstrate their equivalence to the classical
methods in terms of the values of the test statistics; Section IV
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showcases some comparisons of the two arrangements; and
we conclude in Section V.

TABLE I
REPEATED MEASURES LAYOUT FOR g-GROUP PROFILE ANALYSIS

Observation (Response) Level

Treatment Experimental
Group Units (Subjects) 1 2 . p
1 [an Xi12, Xllp]
1 2 [X121' X122, = X12p]
n [Xlnllv X1n12v"'vX1n1p]
Means, X; = [)?11; X12:"'VX1p]
1 [X211' Xo12, X21p]
2 2 [Xzzp Xo22, XZZp]
n2 [Xanl' X2n22""'X2n2p]
Means, X, = [X21' X2 "'vXZp]
1 [X911’ Xglz’ T Xylp]
2 [ngv ngz: ey, ngp]
g : :

ng [Xgnglr Xgnng"'ngngp]

Means, X} = [(Xp1, Xy, Xgp)

Grand Means, X' = [X:, Xy, X,

II. THE PROPOSED COMPUTATIONAL ARRANGEMENTS FOR
PROFILE ANALYSIS

Let X (i=1,2,,9;j=1,2,,n3k=1,2,-,p), be an
observation (a response) in a repeated measures experiment,
where, i,j, and k stand for treatment group (population),
selected subject in the i-th treatment group, and observation
(response) level, respectively. Also, let

Xij = [Xijo Xijzo - Xijp] (D

denote the response vector for the j-th subject within the i-th
treatment group; and

Xi’ = [)?ilﬁ Xiz:"")?ip] 2)
denote the mean response vector for the i-th treatment group.
Consequently, the repeated measures layout for g-group
profile analysis is as shown in Table I.

It is worthy of note that certain assumptions/conditions (see,
for example, [4], [10]) must be met before profile analysis
could be carried out on any set of data. In carrying out profile
analysis, the null hypothesis of equality of population mean
response vectors sought in the ordinary MANOVA; given by,

HO:&zﬂ_Zz"'z.ug

is (usually) divided into three specific possibilities; formulated
in a stage-wise fashion;
Stage I:  Hy,: The profiles are parallel. Equivalently, that is;
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Hoit lag = Mar-1) = Mok — Ha(k-1) = — Hg(k—1) > Where

k=273,-,p.

= Mgk

Stage I1: Given that the profiles are parallel, then;
e Hy,: The profiles are coincident. Equivalently, that is;

Hop: page = Mok = = Ugre; k=1,2,-,p.
Stage I11: Given that the profiles are coincident; then
o Hyz: The profiles are level. Equivalently, that is;

Hi1 = M1z =+ = Hap = Ha1 = U2 =
Hys: —

= ... :ugl :Mgz = ... :ugp

= Uzp

A. Test for Parallel Profiles

Prior to this test, plots are to be made of the mean response
vectors (average profiles).
The null hypothesis in Stage I;

— H11 — H21
#12 sz
HOl: = .=
ﬂ1(p 1) Hap — #z(p 1)
#gz Augl
,ug3 - Mgz
Hgp — Hg(p-1
can be written as,
Hyp:Cpy = Cpp = -+ = C,u_g
where C is a contrast matrix given by;
C -1 1 0 0 0 0
0 0 00 " -1 1

Hy; can be tested, in the usual one-way MANOVA fashion
by employing the Wilks lambda statistic (A); which is most
desirable (among it’s equivalents like Pillai’s trace, Hotelling-
Lawley trace, and Roy’s Greatest Root) because it can be
converted exactly to an F-statistic (see, [3], [11]).

Employing the Wilks lambda criterion, therefore, Hy, is to
be rejected at the significance level, a if

_ detfcwc’]

Ay = det.[C(B+W)C'] 4)
is too small; or alternatively, if it’s equivalent F-statistic is
greater than the F-critical value. For instance, where
(p — 1) = 1 and g = 3, the critical region will be;

¥ ni-p-1) (1-J/A,
( l p-1 )( VAL ) > Fagp-n, 2(2L, ni-p-1)ia ©)

Furthermore, for cases where § >3 and P > 1; as well as

g
when Zni is large, a modification of A, due to Bartlett
i=1
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[12] is employed (see, [5]). This is such that the critical region
becomes;

(r+9)
- (n -1- T) In(A,) > )(;(g_l); @

(6)

The matrices B and W in (4) are, respectively, the Between
(treatment) sum of squares and cross-products and the Within
(residual) sum of squares and cross-products for the X;;’s; and
they are given as,

B = Z?:l ni(Xi - )?)(Xi - X)' (7)
and
w=3L, %L (X~ %) (X — X)) (®)

However, for ease of computation, (7) and (8) are re-written

as;

B =G -3, m(XX) ©
and
W=({D'D)-G (10)
such that, for equal group sizes (ny =n, = =ny =n), G is
given by
G =n(P'P) (11)
and for unequal group sizes, G is given by
G = Z?=1ni()?i)?i,) (12)
The matrices D and P are such that
X1
p =% (13)
Xg
and
%]
p= lxz J (14)
X
where, fori =1,2,-+, g; and
Xiin Xz L. Xilp
X! = Xi21 Xi22 Xin (15)
i : : . :
Xinl-l XiniZ Xinip

If Hy; is rejected, it would be concluded that at least one of
the average profiles is significantly different. Consequently, it
would rather be unreasonable to embark on testing the
hypothesis of coincident profiles. Otherwise, proceed with the
test.
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B. Test for Coincident Profiles

Under the assumption/tenability of parallel profiles, the
profiles will be coincident only if the total heights,
Y1tk Dpe B2k > Yoy Mgie» are equal [5]. Therefore, the
null hypothesis in Stage II can be written in the equivalent
form,;

HOZ: 1’& = 1’& — e = 1”u_g
where
1!
[1xp] _ [1,1,--,1] (16)

Hence, this test is univariate, based on the univariate
observations;

UX;j;i=1,2,,gandj=1,2,,n.

Invariably, this is equivalent to performing a One-Way
ANOVA on the subject totals. Timm [7] stated that the
univariate and multivariate tests are equivalent, assuming
parallelism. Nevertheless, the multivariate test approach
would be preferred since the data have already been arranged
in a multivariate configuration for the first test.

Employing the Wilks lambda criterion, H,, is to be
rejected, at level of significance, a if

_det[1'wi]
27 get[1'(B+W)1] (17)
is too small; or alternatively, if it’s equivalent F-statistic is
greater than the F-critical value. Generally, the critical region
for Hy, is given by;

Zzg: ni—g\ (1-A,
( yl—l )( Ay ) > F(y—l).(2f=1ni—g);a

and where the need arises, a modification of A, due to Bartlett
[12] is carried out by simply replacing A, in (6) with A,.

If Hy, is rejected, it would be concluded that the profiles
were not identical. Consequently, it would rather be
unreasonable to embark on testing the hypothesis of
coincident profiles. Otherwise, proceed with the test.

(18)

C.Test for Level Profiles

This test investigates whether all variables have the same
mean, so that the common profile is level. That is, u; =y, =
-+ = p,; and if this is so, the successive differences are zeros
across the p variables. Invariably, the null hypothesis in Stage
III can be written as;

Hoz: Cp =0

where the common mean vector, u is estimated by the sample
grand mean vector, X.

Employing the Wilks lambda criterion, Hy3 is to be rejected
at level of significance, « if
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As = det.[cw(C']
37 det[c(By+W)C']

(19)

is too small; or alternatively, if it’s equivalent F-statistic is
greater than the F-critical value. The critical region for Hy, as
given by [3], is;

YL ni--1)\ [1-A,
(71 = )( ) > Foonsine--nya (20)

Under Hys,

By =X, ni(XX") €2y
and where the need arises, a modification of A5 due to Bartlett
[12] is carried out by simply replacing A; in (6) with A,.

If Hy; is rejected, the conclusion thus becomes that all the
means are not equal to the same constant. Otherwise, the
profiles are level.

III. EXAMPLE

The data extracted from [9] are used in this section to
illustrate the multivariate computational procedures presented
in the previous section. Timm [7] analyzed this same dataset
(originally analyzed in [9] using univariate procedures) by
employing a different set of multivariate methods. The data,
which are shown in Table II, were as a result of an
investigation on the influence of three drugs, each at a
standard dosage, on learning. Fifteen subjects were assigned at
random to the three drug levels so that five subjects were
tested with each drug on three different trials. Thus, the
number of groups is g = 3; the sample sizes for the three
groups are n, =n, =nz =5; and the number of dependent
variables is p = 3.

By (13) and (14);

7
10

10
11
12
10
10
11| and P =
11

13
7

9
9

10
10

7 8 11
57 9

4710}

)

Il
NO R WWE ON R TN WN N
[y [y
20N ARG O0UTo 0 ON O b

Also, computations using (3), (9), (10), (16), and (21),
respectively, yielded the following matrices;

c=[3 2 JiB=|8397 3407 5050
10.050 5.050 10.000
74 65 35
W=[65 68 38]; 1"=1[1,1,1]; and
35 38 26

[23.387 8.397 10.050}
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426.387 586.603 799.950
By =|586.603 806.593 1099.950 |.
799.950 1099.950 1500.000

TABLE I
EDWARDS’ REPEATED MEASURES DATA
Drug Group Subjects 1 Trle;Is 3
1 2 4 7
2 2 6 10
1 3 3 7 10
4 7 9 11
5 6 9 12
Means 4 7 10
1 5 6 10
2 4 5 10
2 3 7 8 11
4 8 9 11
5 11 12 13
Means 7 8 11
1 3 4 7
2 3 6 9
3 3 4 7 9
4 8 8 10
5 7 10 10
Means 5 7 9
Grand Mean 5.333 7.333  10.000

A.Testing for
(Parallel Profiles)

The plot of the mean vectors is as shown in [7]. The test
hypothesis for this parallelism test is;

Interaction between Drugs and Trials

Hyp: Cpy = Cpp = Cpiz

Equations (4) and (5) yielded A, = 0.4608; the equivalent F-
statistic, for g = 3 and p = 3, to be 2.60; and the critical value,
Fy0.005 = 2.82. Thus, Hy, is not rejected; and the hypothesis of
parallelism is tenable.

B. Testing for Significant Differences in Drugs (Coincident
Profiles)

Since the hypothesis of parallelism was tenable, this test is
worthwhile. The test hypothesis is;

Hop: V'py =1y = 1'ps

Equations (17) and (18) yielded A, =0.84125; the
equivalent F-statistic to be 1.13; and the critical value,
Fy 12,005 = 3.89. Thus, Hy, is not rejected; and the hypothesis
of coincident profiles is tenable.

C.Testing for Significant Differences in Trials (Level
Profiles)

This test is embarked upon since the hypothesis of
coincident profiles was tenable. The test hypothesis is;

Hoz: Cu =0 (= py = pi = - = g)

Equations (19) and (20) yielded A; = 0.0839; the equivalent
F-statistic to be 70.97; and the critical value, F, 3,995 = 3.81.
Thus, Hys is rejected; and the hypothesis of level profiles is
not tenable.
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IV. RESULTS (2 4 77 1 0 0
. . . . 2 6 10 1 0 0
In this section, the outcomes of the three different tests in I 3 7 10 10 0
vis-a-vis the newly Proposed Computational Arrangements 7 9 11 1 0 0
(PCA) in II are placed side-by-side in comparisons with the 6 9 12 1.0 0
outcomes of the tests vis-a-vis the computational arrangements 5 6 10 010
. . . . . 4 5 10 010 4 7 10
in [7] (otherwise referred to, in this paper, as the Classical v=|7 8 11|; x=lo 1 oland B=1|7 8 11]
Arrangements (CA)). These comparisons are presented in 8 9 11 01 0 5 7 9
Table I1I. 11 12 13 010
Given our example, the matrices Y, X, and B using the g 47 8 0 1
classical arrangements (as were used in [7]) are 4 9 g 0 8 i
8 8 10 0 0 1
L7 10 10 0 o 1
TABLE III
COMPARISONS OF CA wiTH PCA
S/N CA PCA Remark
1 A, = 0.4602 A, = 0.4608 PCA is equivalent to CA
2 A, = 0.84197 A, = 0.84125 PCA is equivalent to CA
3 A; =0.0839 A; =0.0839 PCA is equivalent to CA
PN - g _— PCA has reduced computational effort
4 Qn = (cBA) [c(X'X)~*C")(CBA) B=G- Zm"" (*X) than CA
5 0, = A'Y'[I — X(X'X)"'X']Y A W= (D'D) -G PCA has reducz(lia;:loglxutational effort

B and W are computed only once, and the

6  Different Qp, and Q, are computed for each of the three tests.  same are used in three tests; except in the
third test where By is used.

C and A are chosen; and their structures and compositions  C is not chosen but predetermined; and the ~ PCA has reduced computational effort

PCA has reduced computational effort
than CA

7 vary in the three tests. same C is used where applicable. than CA
3 The dimension of the component, I — X(X'X)™*X" of Q, is  The dimension of the highest square matrix ~ PCA has reduced computational effort
(m x m); where m = Zig:l n;. Given our example, m = 15. is (p X p). Given our example, p = 3. than CA
Furthermore, the matrices C and A are such that when REFERENCES
testing for parallel profiles, [1] G.P. Quinn and M. J. Keough, “Repeated measures analysis of variance:
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and when testing for level profiles,
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edition. New York: Holt, Rinehart, and Winston, 1968.

[10] D. F. Morrison, Multivariate Statistical Methods, 4" edition. California:
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We have presented alternative computational arrangements edition. Chichester: John Wiley and Sons, 2012. _ )
in carmying out profil analysis for more-tan-two groups in (12 M, Bt e s o s ey of il emescns”
the multivariate context. These arrangements were
demonstrated on the same data in [9] analyzed in [7]; and the
numerical values of the respective test statistics (A ) for the
three different tests conducted under profile analysis are
equivalent to those derived by the computational arrangements
of [7]. Our results also show that the proposed computational
arrangements actually have reduced computational efforts than
the classical arrangements when carrying out profile analysis
for more-than-two groups in the multivariate context.
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V.CONCLUSION
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