Prediction of Vapor Liquid Equilibrium for Dilute Solutions of Components in Ionic Liquid by Neural Networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32804
Prediction of Vapor Liquid Equilibrium for Dilute Solutions of Components in Ionic Liquid by Neural Networks

Authors: S. Mousavian, A. Abedianpour, A. Khanmohammadi, S. Hematian, Gh. Eidi Veisi

Abstract:

Ionic liquids are finding a wide range of applications from reaction media to separations and materials processing. In these applications, Vapor–Liquid equilibrium (VLE) is the most important one. VLE for six systems at 353 K and activity coefficients at infinite dilution [(γ)_i^∞] for various solutes (alkanes, alkenes, cycloalkanes, cycloalkenes, aromatics, alcohols, ketones, esters, ethers, and water) in the ionic liquids (1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide [EMIM][BTI], 1-hexyl-3-methyl imidazolium bis (trifluoromethylsulfonyl) imide [HMIM][BTI], 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [OMIM][BTI], and 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide [BMPYR][BTI]) have been used to train neural networks in the temperature range from (303 to 333) K. Densities of the ionic liquids, Hildebrant constant of substances, and temperature were selected as input of neural networks. The networks with different hidden layers were examined. Networks with seven neurons in one hidden layer have minimum error and good agreement with experimental data.

Keywords: Ionic liquid, Neural networks, VLE, Dilute solution.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1123705

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1320

References:


[1] Ryo Kato, Jurgen Gmehling, "Systems with ionic liquids: Measurement of VLE and (γ ) data and prediction of their thermodynamic behavior using original UNIFAC, mod. UNIFAC(Do) and COSMO-RS(Ol)" , J. Chem. Thermodynamics 37 (2005) 603–619.
[2] P. Wasserscheid, T. Welton (Eds.), Ionic Liquids in Synthesis, Wiley- VCH, Weinheim, 2003.
[3] R.D. Rogers, K.R. Seddon (Eds.), Ionic Liquids – Industrial Applications for Green Chemistry, ACS Symposium Series, vol. 818, American Chemical Society, Washington, 2002.
[4] Mara G. Freire, Sonia P.M. Ventura, Luıs M.N.B.F. Santos, Isabel M. Marrucho, Joao A.P. Coutinho, " Evaluation of COSMO-RS for the prediction of LLE and VLE of water and ionic liquids binary systems" , Fluid Phase Equilibria 268 (2008) 74–84.
[5] J.G. Huddleston, H.D. Willauer, R.P. Swatloski, A.E. Visser, R.D. Rogers, Chem. Commun. 44 (1998) 1765–1766.
[6] A.G. Fadeev, M.M. Meagher, Chem. Commun. 44 (2001) 295–296.
[7] J. McFarlane,W.B. Ridenour, H. Luo, R.D. Hunt, D.W. DePaoli, D.W.R.X. Ren, Sep. Sci. Technol. 40 (2005) 1245–1265.
[8] R. Kato, J. Gmehling, Fluid Phase Equilib. 231 (2005) 38–43.
[9] U. Doman ska, E. Bogel-Łukasik, Ind. Eng. Chem. Res. 42 (2003) 6986–6992.
[10] U. Doman ska, E. Bogel-Łukasik, R. Bogel-Łukasik, Chem. Eur. J. 9 (2003) 3033–3041.
[11] M. Doker, J. Gmehling, Fluid Phase Equilib. 227 (2005) 255–266.
[12] R. Kato, J. Gmehling, J. Chem. Thermodyn. 37 (2005) 603–619.
[13] U. Domanska, Thermochim. Acta 448 (2006) 19–30.
[14] N. Calvar, B. Gonza lez, E. Gomez, A. Domı´nguez, J. Chem. Eng. Data 51 (2006) 2178–2181.
[15] T.M. Letcher, P. Reddy, Fluid Phase Equilib. 219 (2004) 107–112.
[16] T.M. Letcher, N. Deenadayalu, B. Soko, D. Ramjugernath, P.K. Naicker, J. Chem. Eng. Data 48 (2003) 904–907.
[17] S.P. Verevkin, J. Safarov, E. Bich, E. Hassel, A. Heintz, Fluid Phase Equilib. 236 (2005) 222–228.
[18] M. Bendov´ a, Z.Wagner, J. Chem. Eng. Data 51 (2006) 2126–2131.
[19] J.M. Crosthwaite, M.J. Muldoon, S.N.V.K. Aki, E.J. Maggin, J.F. Brennecke, J. Phys. Chem. B 110 (2006) 9354–9361.
[20] A. Heintz, T.V. Vasiltsova, J. Safarov, E. Bich, S.V. Verevkin, J. Chem. Eng. Data 51 (2006) 648–655.
[21] X. Hu, J. Yu, H. Liu, J. Chem. Eng. Data 51 (2006) 691–695.
[22] J. Safarov, S.P. Verevkin, E. Bich, A. Heintz, J. Chem. Eng. Data 51 (2006) 518–525.
[23] A. Shariati, C.J. Peters, J. Supercrit. Fluids 25 (2003) 109–111.
[24] L.P.N. Rebelo, J.N.C. Lopes, J.M.S.S. Esperanc¸ a, E. Filipe, J. Phys. Chem. B 109 (2005) 6040–6043.
[25] J.O. Valderrama, P.A. Robles, Ind. Eng. Chem. Res. 46 (2007) 1338– 1344.
[26] C. Knoop, D. Tiegs, J. Gmehling, J. Chem. Eng. Data 34 (1989) 240– 247.
[27] M. Krummen, D. Gruber, J. Gmehling, Ind. Eng. Chem. Res. 39 (2000) 2114–2123.
[28] El Ouahed AK, Tiab D, Mazouzi A (2005) Application of artificial intelligence to characterize naturally fractured zones in Hassi Messaoud Oil Field, Algeria. J Pet Sci Eng 49:122–141.