Structural Investigation of Na2O–B2O3–SiO2 Glasses Doped with NdF3
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
Structural Investigation of Na2O–B2O3–SiO2 Glasses Doped with NdF3

Authors: M. S. Gaafar, S. Y. Marzouk

Abstract:

Sodium borosilicate glasses doped with different content of NdF3 mol % have been prepared by rapid quenching method. Ultrasonic velocities (both longitudinal and shear) measurements have been carried out at room temperature and at ultrasonic frequency of 4 MHz. Elastic moduli, Debye temperature, softening temperature and Poisson's ratio have been obtained as a function of NdF3 modifier content. Results showed that the elastic moduli, Debye temperature, softening temperature and Poisson's ratio have very slight change with the change of NdF3 mol % content. Based on FTIR spectroscopy and theoretical (Bond compression) model, quantitative analysis has been carried out in order to obtain more information about the structure of these glasses. The study indicated that the structure of these glasses is mainly composed of SiO4 units with four bridging oxygens (Q4), and with three bridging and one nonbridging oxygens (Q3).

Keywords: Borosilicate glasses, ultrasonic velocity, elastic moduli, FTIR spectroscopy, bond compression model.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1339013

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696

References:


[1] A. Abd El-Moneim, Physica B, 325, 319, (2003).
[2] K. El-Egili, Physica B, 325, 340, (2003).
[3] L. G. Protasova, V. G. Kosenko, Glass and Ceramics, 60, 164, (2003).
[4] M. J. Weber, J. Non-Cryst. Solids, 42, 189, (1980).
[5] C. Spielmann, F. Krausz, T. Brabec, E. Winter, A. Shmidt, J. Quantum Electron., 27, 1207, (1991).
[6] M. Oomen, Adv. Mater., 3, 403, (1991).
[7] A. J. G. Ellison, P. Hess, J. Geophys. Res., 95, 15717, (1990).
[8] T. Schaller, J. F. Stebbins, M. C. Wilding, J. Non-Cryst. Solids, 243, 146, (1999).
[9] L. –G. Hwa, C. L. Lu, L. –C. Liu, Mater. Res. Bull., 35, 1285, (2000).
[10] A. Makishima, J. D. Mackenzie, J. Non-Cryst. Solids, 12, 35, (1973).
[11] A. Makishima, J. D. Mackenzie, J. Non-Cryst. Solids, 17, 147, (1975).
[12] T. Y. Wei, Y. Hu, L. –G. Hwa, J. Non-Cryst. Solids, 288, 140, (2001).
[13] A. Abd El-Moneim, I. M. Youssof, M. M. Shoaib, Mater. Chem. Phys., 52, 258, (1998).
[14] L. –G. Hwa, K. Hsieh, L. Liu, Mater. Chem. Phys., 78, 105, (2002).
[15] L. –G. Hwa, T. Lee, S. Szu, Mater. Res. Bull., 39, 33, (2004).
[16] J. A. Sampaio, M. L. Baesso, S. Gama, A. A. Coelho, J. A. Eiras, I. A. Santos, J. Non-Cryst. Solids, 304, 293, (2002).
[17] C. Bernard, S. Chaussedent, A. Monteil, M. Montagna, L. Zampedri, M. Ferrari, J. Sol-Gel Sci. and Technol., 26, 925, (2003).
[18] Y. B. Saddeek, Physica B, 363, 19, (2005).
[19] B. Bridge, N. D. Patel, D. N. Waters, Phys. Stat. Sol. (a), 77, 655, (1983).
[20] James, E. Shelby, “Introduction to Glass science and technology”, The Royal Society of Chemistry, UK, (1997).
[21] Y. D. Yiannopoulos, G. D. Chryssikos, E. I. Kamitsos, Phys. Chem. Glasses, 42, 164, (2001).
[22] D. L. Pavia, G. M. Lampman, G. S. Kriz, "Introduction to spectroscopy", W. B. Saunders Co., London, (1979).
[23] M. A. Sidkey, M. S. Gaafar, Physica B, 348, 46, (2004).
[24] O. L. Anderson, "Physical Acoustics", Warren P. Mason ed., Academic Press, New York, (III) B, 45, (1965).
[25] V. Kh. Nikulin, L. M. Prusakova, O. S. Viktorova, Soviet J. Glass Phys. Chem. (USA), 7 / 4, 287, (1981).
[26] A. A. Higazy, B. Bridge, A. Hussein, M. A. Ewida, J. Acoust. Soc. Am., 86 (4), 1453, (1989).
[27] M. S. Gaafar, S.Y. Marzouk, Physica B, 388, 294, (2007).
[28] F. A. Khalifa, Z. A. El-Hadi, F. A. Moustaffa, N. A. Hassan, Indian Journal of Pure & Applied Physics, 27, 279, (1989).
[29] K. J. Rao, B. G. Rao, Bul. Mat. Sci., 7(3&4), 353, (1985).
[30] K. M. El-Badry, F. A. Moustafa, M. A. Azooz, F. H. El-Batal, Indian Journal of Pure & Applied Physics, 38, 741, (2000).
[31] A. Adamczyk, M. Handke, Journal of Molecular Structure, 596, 47, (2001).
[32] M. Handke, M. Sitaz, M. Rokita, E. Galuskin, Journal of Molecular Structure, 651 – 653, 39, (2003).
[33] P. Muralidharan, M. Venkateswarlu, N. Satyanarayana, Solid State Ionics, 166, 27, (2004).
[34] K. Annapurna, Maumita Das, P. Kundu, R. N. Dwivedi, S. Buddhudu, Journal of Molecular Structure, 741, 53, (2005).
[35] M. Abd El-Baki, F. A. Abd El-Wahab, F. El-Diasty, Materials Chemistry and Physics, in press, (2005).
[36] E. I. Kamitsos, J. A. Kapoutsis, H. Jain, C. H. Hsieh, J J. Non-Cryst. Solids, 171, 31, (1994).
[37] A. K. Varshneya, "Fundamentals of Inorganic Glasses", Acad. Press, New York, (1994).
[38] Hong Li, Yali Su, Liyu Li, Denis M. Strachan, J. Non-Cryst. Solids, 292, 167, (2001).
[39] H. Li, L. Li, J. D. Vienna, M. Qian, Z. Wang, J. G. Darab, D. K. Peeler, J. Non-Cryst. Solids, 278, 35, (2000).
[40] Byeongwon Park, Hong Li, L. Rene Corrales, J. Non-Cryst. Solids, 297, 220, (2002).
[41] A. Bonamartini Corradi, V. Cannillo, M. Montorsi, C. Siligardi, A. N. Cormack, J. Non-Cryst. Solids, 351, 1185, (2005).
[42] A. Abd El-Moneim, L. Abd El-Latif, Phys. Chem. Glasses, 44 (6), 446, (2003).