Abstract—The aim of this paper is to introduce the notion of intuitionistic fuzzy positive implicative ideals with thresholds \((\lambda,\mu)\) of BCI-algebras and to investigate its properties and characterizations.

Keywords—BCI-algebra, intuitionistic fuzzy set, intuitionistic fuzzy ideal with thresholds \((\lambda,\mu)\), intuitionistic fuzzy positive implicative ideal with thresholds \((\lambda,\mu)\).

I. INTRODUCTION

A BCI-algebra is an important class of logical algebra and was introduced by Iséki [1], [2]. K. Atanassov [3] introduced the concept of intuitionistic fuzzy sets. In 2003, K. Hur [4] applied the concept to the theory of rings, and introduced the concepts of intuitionistic fuzzy subgroups and subrings. M. Jiang and X.L. Xin [5] later introduced the concepts of intuitionistic fuzzy subalgebras (ideals); some meaningful results are obtained. In [6], [7], we have given the concepts of intuitionistic fuzzy subalgebras (ideals) with thresholds \((\lambda,\mu)\) and intuitionistic fuzzy implicative ideals with thresholds \((\lambda,\mu)\) of BCI-algebras, in this paper, we introduce the notion of intuitionistic fuzzy positive implicative ideals with thresholds \((\lambda,\mu)\) of BCI-algebras and give several properties and characterizations of it.

II. PRELIMINARIES

An algebra \((X,\ast,0)\) of type \((2,0)\) is called a BCI-algebra if it satisfies the following axioms:

1. \((BCI-1)\) \(x\ast y\ast y = x\ast y\ast x\ast y\ast y\ast y\ast x = 0\),
2. \((BCI-2)\) \((x\ast(x\ast y))\ast y = y\),
3. \((BCI-3)\) \(x\ast x = 0\),
4. \((BCI-4)\) \(x\ast y = 0\) and \(y\ast x = 0\) imply \(x = y\),
5. \((BCI-5)\) \(x\ast(x\ast y)\ast y = 0\).

for all \(x, y, z \in X\). In a BCI-algebra \(X\), we can define a partial ordering \(\leq\) by putting \(x \leq y\) if and only if \(x\ast y = 0\).

In any BCI-algebra \(X\), the following hold:

1. \((x\ast y)\ast z = (x\ast z)\ast y\),
2. \(x\ast 0 = x\),
3. \(0\ast(x\ast y) = (0\ast x)\ast(0\ast y)\).

III. INTUITIONISTIC FUZZY POSITIVE IMPLICATIVE IDEALS WITH THRESHOLDS \((\lambda,\mu)\)

In this paper, \(X\) always means a BCI-algebra unless otherwise specified.

A nonempty subset \(K\) of \(X\) is called an ideal of \(X\) if \((I_1): 0 \in K, (I_2): x\ast y \in K \quad \text{and} \quad y \in K \implies x \in K\).

A nonempty subset \(K\) of \(X\) is called a positive implicative ideal of \(X\) if it satisfies \((I_1)\) and \((I_3): (x\ast z)\ast(y\ast z) \in K \quad \text{and} \quad y \in K \implies x\ast z \in K\).

Definition 1. [3] Let \(S\) be any set. An intuitionistic fuzzy subset \(A\) of \(S\) is an object of the following form

\[A = \{(x, \mu_A(x), \nu_A(x)) : x \in S\} \quad \text{where} \quad \mu_A : S \rightarrow [0,1] \]

and \(\nu_A : S \rightarrow [0,1]\) define the degree of membership and the degree of non-membership of the element \(x \in S\) respectively and for every \(x \in S\), \(0 \leq \mu_A(x) + \nu_A(x) \leq 1\).

Denote \((I) = \{(a,b); a,b \in [0,1]\}\).

Definition 2. Let \(A = \{(x, \mu_A(x), \nu_A(x)) : x \in S\}\) be an intuitionistic fuzzy set in a set \(S\). For \((a,b) \in (I)\), the set \(A_{(a,b)} = \{x \in S : \mu_A(x) \geq a, \nu_A(x) \leq b\}\) is called a cut set of \(A\).

Definition 3. [6] Let \(\lambda, \mu \in [0,1]\) and \(\lambda < \mu\).

An intuitionistic fuzzy set \(A\) in \(X\) is said to be an intuitionistic fuzzy ideal with thresholds \((\lambda,\mu)\) of \(X\) if the following are satisfied:

\[(IF_1) \mu_A(0) \vee \lambda \geq \mu_A(x) \wedge \mu, \]
\[(IF_2) \nu_A(0) \wedge \mu \leq \nu_A(x) \vee \lambda, \]
\[(IF_3) \mu_A(x) \vee \lambda \geq \mu_A(x\ast y) \wedge \mu_A(y) \wedge \mu, \]
\[(IF_4) \nu_A(x) \wedge \lambda \leq \nu_A(x\ast y) \vee \nu_A(y) \vee \lambda, \]

for all \(x, y \in X\).

Proposition 1. [6] Let \(A\) be an intuitionistic fuzzy ideal with thresholds \((\lambda,\mu)\) of \(X\). If \(x \leq y\) holds in \(X\), then

\[\mu_A(x) \vee \lambda \geq \mu_A(y) \wedge \mu, \quad \nu_A(x) \wedge \lambda \leq \nu_A(y) \vee \lambda. \]
Proposition 2. [6] Let \(A \) be an intuitionistic fuzzy ideal with thresholds \((\lambda, \mu) \) of \(X \). If the inequality \(x \ast y \leq z \) holds in \(X \), then for all \(x, y, z \in X \),

\[
\mu_\lambda(x) \land \lambda \geq \mu_\lambda(y) \land \mu_\lambda(z) \land \mu,
\]
\[
v_\lambda(x) \land \mu \leq v_\lambda(y) \lor v_\lambda(z) \lor \lambda.
\]

III. INTUITIONISTIC FUZZY POSITIVE IMPLICATIVE IDEALS WITH THRESHOLDS \((\lambda, \mu) \) OF BCI-ALGEBRAS

Definition 4. Let \(\lambda, \mu \in (0,1] \) and \(\lambda < \mu \). An intuitionistic fuzzy set \(A \) in \(X \) is called an intuitionistic fuzzy positive implicative ideal with thresholds \((\lambda, \mu) \) of \(X \) if it satisfies \((IF_\lambda),(IF_\mu) \) and

\[
(IF_\lambda) \mu_\lambda(x \ast z) \lor \lambda \geq \mu_\lambda(((x \ast z) \ast z) \ast (y \ast z)) \land \mu_\lambda(y) \land \mu,
\]
\[
(IF_\mu) v_\lambda(x \ast z) \land \mu \leq v_\lambda(((x \ast z) \ast z) \ast (y \ast z)) \lor v_\lambda(y) \lor \lambda,
\]

for all \(x, y, z \in X \).

Example 1. Let \(X = \{0,1,2\} \) with Cayley table given by

<table>
<thead>
<tr>
<th>*</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Define \(A = \{(x,\mu_\lambda(x),v_\lambda(x)) : x \in S\} \) where \(\mu_\lambda : X \rightarrow [0,1] \)
and \(v_\lambda : X \rightarrow [0,1] \) by \(\mu_\lambda(0) = 2/3, \mu_\lambda(1) = \mu_\lambda(2) = 1/3, \)
\(v_\lambda(0) = 1/4, v_\lambda(1) = v_\lambda(2) = 1/2 \). Let \(\lambda = 1/8 \) and \(\mu = 3/4 \). By routine calculations, we have that \(A \) is an intuitionistic fuzzy positive implicative ideal with thresholds \((\lambda, \mu) \) of \(X \).

The following proposition gives a relation between intuitionistic fuzzy positive implicative ideals with thresholds \((\lambda, \mu) \) and intuitionistic fuzzy ideals with thresholds \((\lambda, \mu) \) of \(X \).

Proposition 3. Any intuitionistic fuzzy positive implicative ideal with thresholds \((\lambda, \mu) \) of \(X \) is an intuitionistic fuzzy ideal with thresholds \((\lambda, \mu) \) of \(X \), but the converse does not hold.

Proof. Assume that \(A \) is an intuitionistic fuzzy positive implicative ideal with thresholds \((\lambda, \mu) \) of \(X \) and put \(z = 0 \) in \((IF_\lambda) \) and \((IF_\mu) \), we get

\[
\mu_\lambda(x) \lor \lambda \geq \mu_\lambda(x \ast y) \land \mu_\lambda(y) \land \mu,
\]
\[
v_\lambda(x) \land \mu \leq v_\lambda(x \ast y) \lor v_\lambda(y) \lor \lambda.
\]

This means that \(A \) satisfies \((IF_\lambda) \) and \((IF_\mu) \). Combining \((IF_\lambda) \) and \((IF_\mu) \), \(A \) is an intuitionistic fuzzy ideal with thresholds \((\lambda, \mu) \) of \(X \).

To show the last half part, we see the following example.

Example 2. Let \(X = \{0,1,2\} \) with Cayley table given by

<table>
<thead>
<tr>
<th>*</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Define \(A = \{(x,\mu_\lambda(x),v_\lambda(x)) : x \in S\} \) where \(\mu_\lambda : X \rightarrow [0,1] \) and \(v_\lambda : X \rightarrow [0,1] \) by \(\mu_\lambda(0) = 2/3, \mu_\lambda(1) = \mu_\lambda(2) = 1/3, \)
\(v_\lambda(0) = 1/4, v_\lambda(1) = v_\lambda(2) = 1/2 \). Let \(\lambda = 1/8 \) and \(\mu = 3/4 \). It is easy to verify that \(A \) is an intuitionistic fuzzy ideal with thresholds \((\lambda, \mu) \) of \(X \). But it is not an intuitionistic fuzzy positive implicative ideal with thresholds \((\lambda, \mu) \) of \(X \) since:

\[
\mu_\lambda(2 \ast 1) \lor \lambda < \mu_\lambda(((2 \ast 1) \ast 1) \ast (0 \ast 1)) \land \mu_\lambda(0) \land \mu.
\]

Next, we give characterizations of intuitionistic fuzzy positive implicative ideals with thresholds \((\lambda, \mu) \) of \(X \).

Proposition 4. Let \(A \) be an intuitionistic fuzzy ideal with thresholds \((\lambda, \mu) \) of \(X \). Then the following are equivalent:

(i) \(A \) is an intuitionistic fuzzy positive implicative ideal with thresholds \((\lambda, \mu) \) of \(X \),
(ii) \(\mu_\lambda(((x \ast y) \ast z) \ast z) \ast (y \ast z) \land \mu_\lambda(y) \land \mu_\lambda(z) \land \mu_\lambda(x), \)
\(v_\lambda(((x \ast y) \ast z) \ast z) \ast (y \ast z) \lor v_\lambda(y) \lor v_\lambda(z) \lor \lambda, \)
for all \(x, y, z \in X \),
(iii) \(\mu_\lambda(x \ast y) \lor \lambda \geq \mu_\lambda(((x \ast y) \ast y) \ast (0 \ast y)) \land \mu_\lambda(y) \land \mu_\lambda(z) \land \mu_\lambda(x), \)
\(v_\lambda((x \ast y) \ast y) \land \mu \leq v_\lambda(((x \ast y) \ast y) \ast (0 \ast y)) \lor v_\lambda(y) \lor v_\lambda(z) \lor \lambda, \)
for all \(x, y, z \in X \).

Proof. (i) \(\Rightarrow \) (ii) Suppose that \(A \) is an intuitionistic fuzzy positive implicative ideal with thresholds \((\lambda, \mu) \) of \(X \). Since

\[
(((x \ast y) \ast z) \ast (0 \ast z)) = (((x \ast y) \ast z) \ast z) \ast ((y \ast y) \ast z)
\]
\[
= (((x \ast z) \ast y) \ast (y \ast z)) \leq ((x \ast z) \ast (y \ast z)),
\]
by \((IF_\lambda),(IF_\mu),(IF_\mu),(IF_\mu) \) and Proposition 1, we have

\[
\mu_\lambda((x \ast y) \ast z) \lor \lambda \geq \mu_\lambda(((x \ast y) \ast z) \ast (0 \ast z)) \land \mu_\lambda(x) \land \mu_\lambda(y) \land \mu_\lambda(z) \land \mu_\lambda(x),
\]
\[
\geq \mu_\lambda(((x \ast y) \ast z) \ast (0 \ast z)) \land \lambda \land \mu_\lambda(x) \land \mu_\lambda(y) \land \mu_\lambda(z) \land \mu_\lambda(x),
\]
\[
\geq \mu_\lambda(((x \ast z) \ast (y \ast z)) \land \mu_\lambda(x) \land \mu_\lambda(y) \land \mu_\lambda(z) \land \mu_\lambda(x),
\]
\[
\mu_\lambda(((x \ast z) \ast (y \ast z)) \land \mu_\lambda(x) \land \mu_\lambda(y) \land \mu_\lambda(z) \land \mu_\lambda(x).
\]
\[\leq \left(v_{\alpha}\left((x*y)z \right) \right) \cap (0*z) \cup v_{\beta}(0) \cup \lambda \cap \mu \]
\[= \left(v_{\alpha}\left((x*y)z \right) \right) \cap (0*z) \cup (v_{\beta}(0) \cup \lambda) \cap (\lambda \cap \mu) \]
\[\leq \left(v_{\alpha}\left((x*y)z \right) \right) \cap (y*z) \cup \lambda \]
\[\cup v_{\alpha}\left((x*z) \right) \cap (y*z) \cup \lambda = v_{\alpha}\left((x*z) \right) \cup (y*z) \cup \lambda. \]

Hence
\[\mu_{\alpha}\left((x*y)z \right) \cup \lambda \geq \mu_{\alpha}\left((x*z) \right) \cup (y*z) \cup \lambda, \]
\[v_{\alpha}\left((x*y)z \right) \cup \lambda \leq v_{\alpha}\left((x*z) \right) \cup (y*z) \cup \lambda. \]

and (ii) holds.

- (ii) ⇒ (iii) Substituting 0 for \(y \) and \(y \) for \(z \) in (ii), respectively, we have (iii).
- (iii) ⇒ (i) Since

\[\left(\left((x*y)z \right) \cap (0*y) \right) \cap \left((x*y)z \right) \leq (z*y) \cap (0*y) \subseteq z, \]

by Proposition 2, we obtain
\[\mu_{\alpha}\left((x*y)z \right) \cup \lambda \geq \mu_{\alpha}\left((x*z) \right) \cup (y*z) \cup \lambda, \]
\[v_{\alpha}\left((x*y)z \right) \cup \lambda \leq v_{\alpha}\left((x*z) \right) \cup (y*z) \cup \lambda. \]

From (iii), we have
\[\mu_{\alpha}\left(x*y \right) \cup \lambda = \left(\mu_{\alpha}\left(x*z \right) \right) \cup \lambda, \]
\[\geq \mu_{\alpha}\left((x*y)z \right) \cap (0*y) \cup \lambda \cup (\mu \cup \lambda) \]
\[\geq \mu_{\alpha}\left((x*y)z \right) \cup (y*z) \cup \lambda, \]
\[v_{\alpha}\left(x*y \right) \cup \lambda \leq v_{\alpha}\left((x*y)z \right) \cup (0*y) \cup \lambda \cup (\lambda \cup \mu) \]
\[= v_{\alpha}\left((x*y)z \right) \cup (y*z) \cup \lambda \]
\[\leq v_{\alpha}\left((x*y)z \right) \cup (y*z) \cup \lambda. \]

Hence, \(A \) is an intuitionistic fuzzy positive implicative ideal with thresholds \((\lambda, \mu)\) of \(X \).

Proposition 5. An intuitionistic fuzzy set \(A \) of \(X \) is an intuitionistic fuzzy positive implicative ideal with thresholds \((\lambda, \mu)\) of \(X \) if and only if, for all \(\alpha, \beta \in (\lambda, \mu) \), \(A_{\alpha, \beta} \) is either empty or a positive implicative ideal of \(X \).

Proof. Let \(A \) be an intuitionistic fuzzy positive implicative ideal with thresholds \((\lambda, \mu)\) of \(X \) and \(A_{\alpha, \beta} \neq \emptyset \) for some \(\alpha, \beta \in (\lambda, \mu) \). It is clear that \(0 \in A_{\alpha, \beta} \). Let \((x*z) \cap (y*z) \in A_{\alpha, \beta} \) and \(y \in A_{\alpha, \beta} \), then
\[\mu_{\alpha}\left((x*z) \right) \geq \mu_{\alpha}\left((x*z) \right) \cap (y*z) \cap \mu_{\alpha}(y), \]
\[v_{\alpha}\left((x*z) \right) \leq v_{\alpha}\left((x*z) \right) \cap (y*z) \cap v_{\alpha}(y). \]

It follows from \((IF_{\alpha})\) and \((IF_{\beta})\),
\[\mu_{\alpha}\left((x*z) \right) \cap (y*z) \cap \mu_{\alpha}(y) \geq \mu_{\alpha}\left((x*z) \right) \cap (y*z) \cap \mu_{\alpha}(y) \]
\[v_{\alpha}\left((x*z) \right) \cap (y*z) \cap v_{\alpha}(y) \leq v_{\alpha}\left((x*z) \right) \cap (y*z) \cap v_{\alpha}(y). \]

Namely, \(\mu_{\alpha}\left((x*z) \right) \geq \mu_{\alpha}\left((x*z) \right) \cap (y*z) \cap \mu_{\alpha}(y) \)
\[v_{\alpha}\left((x*z) \right) \leq v_{\alpha}\left((x*z) \right) \cap (y*z) \cap v_{\alpha}(y). \]

This shows that \(A_{\alpha, \beta} \) is a positive implicative ideal of \(X \). Conversely, suppose that for each \(\alpha, \beta \in (\lambda, \mu) \), \(A_{\alpha, \beta} \) is either empty or a positive implicative ideal of \(X \). For any \(x \in X \), let \(\alpha = \mu_{\alpha}\left((x*z) \right) \cap (y*z) \cap \mu_{\alpha}(y) \)
\[v_{\alpha}\left((x*z) \right) \leq v_{\alpha}\left((x*z) \right) \cap (y*z) \cap v_{\alpha}(y). \]

i.e., \(\mu_{\alpha}(0) \geq \alpha \) and \(v_{\alpha}(0) \leq \beta \). We get
\[\mu_{\alpha}(0) \geq \mu_{\alpha}(0) \geq \mu_{\alpha}(x) \cap \mu_{\alpha}(y) \]
\[v_{\alpha}(0) \leq v_{\alpha}(0) \leq v_{\alpha}(x) \cap v_{\alpha}(y). \]

Hence \((x*z) \cap (y*z) \in A_{\alpha, \beta} \), for all \(x \in X \). Now we only need to show that \(A \) satisfies \((IF_{\alpha})\) and \((IF_{\beta})\). Let
\[\alpha = \mu_{\alpha}\left((x*z) \right) \cap (y*z) \cap \mu_{\alpha}(y), \]
\[\beta = v_{\alpha}\left((x*z) \right) \cap (y*z) \cap v_{\alpha}(y). \]

Then
\[\mu_{\alpha}\left((x*z) \right) \cap (y*z) \cap \mu_{\alpha}(y) \geq \mu_{\alpha}\left((x*z) \right) \cap (y*z) \cap \mu_{\alpha}(y) \]
\[v_{\alpha}(0) \leq v_{\alpha}(0) \leq v_{\alpha}(x) \cap v_{\alpha}(y). \]

Hence \((x*z) \cap (y*z) \in A_{\alpha, \beta} \) and \(y \in A_{\alpha, \beta} \). Since \(A_{\alpha, \beta} \) is a positive implicative ideal of \(X \), thus \(x*z \in A_{\alpha, \beta} \), i.e.,
\[\mu_{\alpha}\left((x*z) \right) \geq \mu_{\alpha}\left((x*z) \right) \cap (y*z) \cap \mu_{\alpha}(y) \]
\[v_{\alpha}(x*z) \leq v_{\alpha}(x*z) \cap v_{\alpha}(y). \]

We get
\[\mu_{\alpha}\left((x*z) \right) \cap (y*z) \cap \mu_{\alpha}(y) \geq \mu_{\alpha}\left((x*z) \right) \cap (y*z) \cap \mu_{\alpha}(y) \]
\[v_{\alpha}(x*z) \leq v_{\alpha}(x*z) \cap v_{\alpha}(y). \]

Namely,
\[\mu_{\alpha}\left((x*z) \right) \cap (y*z) \cap \mu_{\alpha}(y) \geq \mu_{\alpha}\left((x*z) \right) \cap (y*z) \cap \mu_{\alpha}(y) \]
\[v_{\alpha}(x*z) \leq v_{\alpha}(x*z) \cap v_{\alpha}(y). \]

Summarizing the above arguments, \(A \) is an intuitionistic fuzzy positive implicative ideal with thresholds \((\lambda, \mu)\) of \(X \).
Proposition 6 Let J be a positive implicative ideal of X. Then there exists an intuitionistic fuzzy positive implicative ideal A with thresholds (λ, μ) of X such that $A_{\langle\alpha, \beta\rangle} = J$ for some $\alpha, \beta \in (\lambda, \mu]$.

Proof. Define $A = \{x, \mu_A(x), \nu_A(x)\}: x \in S\}$ by
$$
\mu_A(x) = \begin{cases}
\alpha & \text{if } x \in J, \\
\lambda & \text{if } x \notin J,
\end{cases}
$$
$$
\nu_A(x) = \begin{cases}
\beta & \text{if } x \in J, \\
\mu & \text{if } x \notin J,
\end{cases}
$$
where α, β are two fixed numbers in $(\lambda, \mu]$. Since J is a positive implicative ideal of X, if $(x \in J) \land (y \in J)$ then $x \land y \in J$. Hence
$$
\mu_A((x \land y) \land (y \land z)) = \mu_A((x \land y) \land (y \land z)) \land \mu_A(y) \land \mu_A(\nu_A(y) \land \lambda).
$$
This means that A satisfies (IF_1) and (IF_2). Since $0 \in J$, $\mu_A(0) \land \lambda = \alpha \land \mu$ and $\nu_A(0) \land \mu = \beta \land \nu_A(0) \land \nu_A(0) \land \lambda$, for all $x \in X$ and so A satisfies (IF_1) and (IF_2). Thus, A is an intuitionistic fuzzy positive implicative ideal with thresholds (λ, μ) of X. It is clear that $A_{\langle\alpha, \beta\rangle} = J$.

Definition 5. Let S be any set. If
$$
A = \{x, \mu_A(x), \nu_A(x)\}: x \in S\}$
$$
be any two intuitionistic fuzzy subsets of S, then
$$
A \cap B = \{x, \mu_{A \cap B}(x), \nu_{A \cap B}(x)\}: x \in S\}
$$
where $\mu_{A \cap B}(x) = \mu_A(x) \land \mu_B(x)$ and $\nu_{A \cap B}(x) = \nu_A(x) \lor \nu_B(x)$.

Proposition 7 Let A and B be two intuitionistic fuzzy positive implicative ideals with thresholds (λ, μ) of X. Then $A \cap B$ is also an intuitionistic fuzzy positive implicative ideal with thresholds (λ, μ) of X.

Proof. For all $x, y, z \in X$, by Definition 4, we have
$$
\mu_{A \cap B}(0) \lor \lambda = (\mu_A(0) \lor \mu_B(0)) \lor \lambda = (\mu_A(0) \lor \lambda) \land (\mu_B(0) \lor \lambda)
$$
$$
\geq (\mu_A(x) \land \mu_B(x)) \land (\mu_B(x) \lor \lambda) = (\mu_A(x) \land \mu_B(x)) \land (\mu_B(x) \lor \lambda),
$$
$$
\nu_{A \cap B}(0) \land \mu = (\nu_A(0) \land \nu_B(0)) \land \mu = (\nu_A(0) \land \mu) \lor (\nu_B(0) \land \mu)
$$
$$
\leq (\nu_A(0) \lor \lambda) \lor (\nu_B(0) \lor \lambda) = \nu_{A \cap B}(x) \lor \lambda,
$$

Hence $A \cap B$ is an intuitionistic fuzzy positive implicative ideal with thresholds (λ, μ) of X.

Definition 6. Let A and B be two intuitionistic fuzzy sets of a set X. The Cartesian product of A and B is defined by
$$
A \times B = \{x, y: (x, y) \in A \times B\}
$$
where
$$
\mu_{A \times B}(x, y) = \mu_A(x) \land \mu_B(y), \nu_{A \times B}(x, y) = \nu_A(x) \lor \nu_B(y).
$$

Proposition 8. Let A and B be two intuitionistic fuzzy positive implicative ideals with thresholds (λ, μ) of X. Then $A \times B$ is also an intuitionistic fuzzy positive implicative ideal with thresholds (λ, μ) of $X \times X$.

Proof. For all $(x, y) \in X \times X$, by Definition 4, we get
$$
\mu_{A \times B}(0) \lor \lambda = (\mu_A(0) \lor \mu_B(0)) \lor \lambda = (\mu_A(0) \lor \mu_A(0)) \land (\mu_B(0) \lor \mu_B(0))
$$
$$
\geq (\mu_A(x) \land \mu_B(x)) \land (\mu_B(x) \lor \lambda) = (\mu_A(x) \land \mu_B(x)) \land (\mu_B(x) \lor \lambda),
$$
$$
\nu_{A \times B}(0) \land \mu = (\nu_A(0) \land \nu_B(0)) \land \mu = (\nu_A(0) \land \mu) \lor (\nu_B(0) \land \mu)
$$
$$
\leq (\nu_A(0) \lor \lambda) \lor (\nu_B(0) \lor \lambda) = \nu_{A \times B}(x, y) \lor \lambda,
$$

Hence $A \times B$ is an intuitionistic fuzzy positive implicative ideal with thresholds (λ, μ) of $X \times X$.
For all \((x_1, x_2), (y_1, y_2), (z_1, z_2) \in X \times X\), we have

\[
\mu_{AB}(x_1 \ast z_1, x_2 \ast z_2) \vee \lambda = (\mu_A(x_1 \ast z_1) \land \mu_B(x_2 \ast z_2)) \vee \lambda \\
= (\mu_A(x_1 \ast z_1) \vee \lambda) \land (\mu_B(x_2 \ast z_2) \vee \lambda) \\
\geq (\mu_A((x_1 \ast z_1) \ast z_1) \ast (y_1 \ast z_1)) \land (\mu_B(y_1 \ast z_1) \land \mu) \\
\land (\mu_B((x_2 \ast z_2) \ast z_2) \ast (y_2 \ast z_2)) \land (\mu_A(y_2 \ast z_2) \land \mu) \\
= \mu_A((x_1 \ast z_1) \ast z_1) \ast (y_1 \ast z_1) \ast (x_2 \ast z_2) \ast (y_2 \ast z_2)) \\
\land \mu_B((x_1 \ast z_1) \ast z_1) \ast (y_1 \ast z_1) \ast (x_2 \ast z_2) \ast (y_2 \ast z_2)) \\
\land \mu_A(y_1 \ast z_1) \land \mu \\
\land \mu_B(y_2 \ast z_2) \land \mu \\
\nu_{AB}(x_1 \ast z_1, x_2 \ast z_2) \land \mu = (\nu_A(x_1 \ast z_1) \lor \nu_B(x_2 \ast z_2)) \land \mu \\
= (\nu_A(x_1 \ast z_1) \land \mu) \lor (\nu_B(x_2 \ast z_2) \land \mu) \\
\geq (\nu_A((x_1 \ast z_1) \ast z_1) \ast (y_1 \ast z_1)) \lor (\nu_B(y_1 \ast z_1) \lor \lambda) \\
\lor (\nu_B((x_2 \ast z_2) \ast z_2) \ast (y_2 \ast z_2)) \lor (\nu_A(y_2 \ast z_2) \lor \lambda) \\
= \nu_A((x_1 \ast z_1) \ast z_1) \ast (y_1 \ast z_1) \lor \nu_B((x_2 \ast z_2) \ast z_2) \lor (y_2 \ast z_2)) \\
\lor \nu_A(y_1 \ast z_1) \lor \nu_B(y_2 \ast z_2) \lor \lambda \\
= \nu_A((x_1 \ast z_1) \ast z_1) \ast (y_1 \ast z_1) \lor (x_2 \ast z_2) \ast (y_2 \ast z_2)) \\
\lor \nu_B(y_1 \ast z_1) \lor \nu_B(y_2 \ast z_2) \lor \lambda,
\]

Hence \(A \times B\) is an intuitionistic fuzzy positive implicative ideal with thresholds \((\lambda, \mu)\) of \(X \times X\).

REFERENCES