Cooling-Rate Induced Fiber Birefringence Variation in Regenerated High Birefringent Fiber
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
Cooling-Rate Induced Fiber Birefringence Variation in Regenerated High Birefringent Fiber

Authors: M. H. Lai, D. S. Gunawardena, K. S. Lim, H. Ahmad

Abstract:

In this paper, we have reported birefringence manipulation in regenerated high birefringent fiber Bragg grating (RPMG) by using CO2 laser annealing method. The results indicate that the birefringence of RPMG remains unchanged after CO2 laser annealing followed by slow cooling process, but reduced after fast cooling process (~5.6×10-5). After a series of annealing procedures with different cooling rates, the obtained results show that slower the cooling rate, higher the birefringence of RPMG. The volume, thermal expansion coefficient (TEC) and glass transition temperature (Tg) change of stress applying part in RPMG during cooling process are responsible for the birefringence change. Therefore, these findings are important to the RPMG sensor in high and dynamic temperature environment. The measuring accuracy, range and sensitivity of RPMG sensor is greatly affected by its birefringence value. This work also opens up a new application of CO2 laser for fiber annealing and birefringence modification.

Keywords: Birefringence, CO2 laser annealing, regenerated gratings, thermal stress.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1338540

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496

References:


[1] L. A. Ferreira, F. M. Araujo, J. L. Santos, and F. Farahi, “Simultaneous measurement of strain and temperature using interferometrically interrogated fiber Bragg grating sensors,” Opt. Eng., vol. 39, no. 8, pp. 2226–2234, Aug. 2000.
[2] G. H. Chen, L. Y. Liu, H. Z. Jia, J. M. Yu, L. Xu, and W. C. Wang, “Simultaneous strain and temperature measurements with fiber Bragg grating written in novel Hi-Bi optical fiber,” IEEE Photon. Technol. Lett., vol. 16, no. 1, pp. 221–223, Jan. 2004.
[3] C. C. Ye, S. E. Staines, S. W. James, and R. P. Tatam, “A polarization-maintaining fiber Bragg grating interrogation system for multi-axis strain sensing,” Meas. Sci. Technol., vol. 13, no. 9, pp. 1446–1449, Aug. 2002.
[4] T. Mawatari and D. Nelson, “A multi-parameter Bragg grating fiber optic sensor and triaxial strain measurement,” Smart Mater. Struct., vol. 17, no. 3, May 2008, Art. ID. 035033.
[5] C. M. Lawrence, D. V. Nelson, E. Udd, and T. Bennett, “A fiber optic sensor for transverse strain measurement,” Exp. Mech., vol. 39, no. 3, pp. 202–209, Sep. 1999.
[6] P. L. Chu and R. A. Sammut, “Analytical method for calculation of stresses and material birefringence in polarization maintaining optical fiber,” J. Lightw. Technol., vol. 2, no. 5, pp. 650–662, Oct. 1984.
[7] M. Taccaa, M. Ferrario, P. Boffi, and M. Martinelli, “Drawing parameters optimization for birefringence reduction in optical fibers,” Opt. Commun., vol. 283, no. 9, pp. 1773–1776, May 2010.
[8] F. Just, R. Spittel, J. Bierlich, S. Grimm, M. Jäger, H. Bartelt, “The influence of the fiber drawing process on intrinsic stress and the resulting birefringence optimization of PM fibers,” Opt. Mater., vol. 42, pp. 345–350, Apr. 2015.
[9] A. Ourmazd, M. P. Varnham, R. D. Birch, and D. N. Payne, “Thermal properties of highly birefringent optical fibers & preforms,” Appl. Opt., vol. 22, no. 15, pp. 2374–2379, Aug. 1983.
[10] A. Ourmazd, R. D. Birch, M. P. Varnham, D. N. Payne, and E. J. Tarbox, “Enhancement of birefringence in polarization maintaining fiber by thermal annealing,” Electron. Lett., vol. 19, no. 4, pp. 143–144, Feb. 1983.
[11] C. T. Moynihan, A. J. Easteal, J. Wilder, and J. Tucker, “Dependence of the glass transition temperature on heating and cooling rate,” J. Phys. Chem., vol. 78, no. 26, pp. 2673–2677, Dec. 1974.
[12] M. I. Ojovan, “Viscosity and glass transition in amorphous oxides,” Adv. Condens. Matter Phys., vol. 2008, 2008, Art. ID. 817829.
[13] Y. Wang, X. Bian, and R. Jia, “Effects of cooling rate on thermal expansion of Cu49Hf42Al9 metallic glass,” Trans. Nonferrous Metals Soc. China, vol. 21, no. 9, pp. 2031–2036, 2011.
[14] D. Turnbull and M. H. Cohen, “Free-volume model of the amorphous phase: Glass transition,” J. Chem. Phys., vol. 34, no. 1, pp. 120–125, Jan. 1961.
[15] M. H. Lai, K. S. Lim, D. S. Gunawardena, H. Z. Yang, W. Y. Chong, H. Ahmad, “Thermal stress modification in regenerated fiber Bragg grating via manipulation of glass transition temperature based on CO2-laser annealing,” Opt. Lett., vol. 40, no. 5, pp. 748–751, Mar. 2015.
[16] G. A. Pavlath and H. J. Shaw, “Birefringence and polarization effects in fiber gyroscopes,” Appl. Opt., vol. 21, no. 10, pp. 1752–1757, May 1982.
[17] C. C. Ye, S. E. Staines, S. W. James, and R. P. Tatam, “A polarization-maintaining fiber Bragg grating interrogation system for multi-axis strain sensing,” Meas. Sci. Technol., vol. 13, no. 9, pp. 1446–1449, Aug. 2002.
[18] Changrui Liao, Dong-ning Wang, Yuhua Li, Tong Sun, and Kenneth T. V. Grattan, “Temporal thermal response of Type II–IR fiber Bragg gratings,” Appl. Opt., vol. 48, no. 16, pp. 3001-3007, Jun 2009.
[19] M. H. Lai, D. S. Gunawardena, K. S. Lim, H. Z. Yang, and H. Ahmad, “Observation of grating regeneration by direct CO2 laser annealing,” Opt. Exp., vol. 23, no. 1, pp. 452–463, Jan. 2015.