
 

 

 
Abstract—In this paper, the 2-D unsteady viscous flow around 

two cam shaped cylinders in tandem arrangement is numerically 
simulated in order to study the characteristics of the flow in turbulent 
regimes. The investigation covers the effects of high subcritical and 
supercritical Reynolds numbers and L/D ratio on total drag 
coefficient. The equivalent diameter of cylinders is 27.6 mm The 
space between center to center of two cam shaped cylinders is define 
as longitudinal pitch ratio and it varies in range of 1.5< L/D<6. 
Reynolds number base on equivalent circular cylinder varies in range 
of 27×103< Re <166×103 Results show that drag coefficient of both 
cylinders depends on pitch ratio. However, drag coefficient of 
downstream cylinder is more dependent on the pitch ratio. 
 

Keywords—Cam shaped, tandem, numerical, drag coefficient, 
turbulent. 

I. INTRODUCTION 

T is well known that two circular tubes in tandem 
arrangement are prevalent in engineering applications, such 

as tube bundles in heat exchanger. In the tandem arrangement, 
the flow field depends highly on the configuration and the 
spacing of the cylinder pair due to both wake and proximity-
induced interference effects. There are many experimental 
studies [1]-[10] devoted to the flow over two circular cylinders 
with different arrangement. Similar experiment was extended 
by [1] up to L/d = 7.5 (Re = 1.05×105). They measured only 
CD of the individual cylinders; therefore, more investigation 
was needed to clarify the other parameters, such as, CD rms, 
CL rms, wakes, St, boundary layer characteristics around the 
cylinders. Reference [2] carried out an experimental study on 
two rotating circular cylinders for 13×103≤ Re ≤ 40×103, 1.6< 
L / D < 9 They measured the drag coefficient of two cylinders 
at various mutual distances. Reference [3] investigated 
experimentally interference between1.6< L / D < 6. Reference 
[4] studied two cylinders in turbulent flow at 20×103≤ Re ≤ 
80×103.They observed that at subcritical Reynolds numbers, 
the reattachment of separated flow from the upstream cylinder 
to the downstream one occurred in the critical spacing range 
of 3 < L / D < 4. Reference [5] measured the combined drag 
force acting on the two parallel circular wires in tandem 
arrangement for L/d < 4.5. They observed that the minimum 
drag on two wires in contact is only 40 percent of the drag on 
one wire alone. This was resulted from the fact that the 
existence of the downstream wire improved the streaming of 
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the upstream wire. In most cases, the studies were performed 
at subcritical Reynolds numbers(less than 1.5 × 105) and 
focused on fundamental supercritical Reynolds numbers, one 
can mention the studies of [6] at Re = 166×103. The reported 
studies were concerned with two circular cylinders or elliptic 
cylinders the flow pattern for tandem arrangement was studied 
numerically by [11]-[16] for both laminar and turbulent 
regimes. References [17]-[20] numerically studied flow and 
heat transfer from single and two no-circular tube with 
different arrangements in laminar flow regime. Reference [21] 
investigated numerically the flow over a two-dimensional 
(2D) circular cylinder at a turbulent Reynolds number of 
20×103 and its control by air blowing from several slots 
located on the surface of the cylinder, computationally. Non-
circular tubes perform better compare to circular tubes [22]-
[30]. References [22]-[29] studied flow and heat transfer 
around non-circular tube bank in cross-flow in in-line and 
staggered arrangements. They found that cam-shaped tube 
performs much better than circular tube bank. There has not 
been extensive research on forces and flow around two cam 
shaped cylinders in turbulent flow. In the present article, the 
turbulent flows around two cam-shaped cylinders in a tandem 
arrangement are numerically simulated. In turbulent regime, 
simulations are performed at 27×103≤ Re ≤ 166×103 for a 
range of gaps between 1.5≤ L / D ≤6.  

II. PROBLEM DESCRIPTION AND GOVERNING EQUATIONS  

The cross section profile of the cylinder comprised some 
parts of two circles with two-line segments tangent to them. 
The cylinder have identical diameters equal to d=11 mm and 
D=22mm with distance between their centers, l=13 mm, (Fig. 
1). Characteristic length for this tube is the diameter of an 
equivalent circular cylinder, Deq=P/π =27.6 mm, whose 
circumferential length is equal to that of the cam-shaped 
cylinder The typical solution domain and the cylinder 
boundary definition and nomenclature used in this work are 
shown in Fig. 2. The inlet flow has a uniform velocity U∞. The 
velocity range considered covers turbulent flow conditions. 
The solution domain is bounded by the inlet, the outlet, and by 
the plane confining walls, AB and CD. These are treated as 
solid walls, while AC and BD are the flow inlet and outlet 
planes. In order to decrease the effect of entrance and outlet 
regions, the upstream and downstream lengths are 15Deq and 
50 Deq, respectively and for neglecting the wall effects on 
cylinders the distance between walls is 30Deq. 
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(a) Cam1 
 

 

(b) Cam2 

Fig. 7 Variation of drag coefficient with Reynolds number and pitch 
ratio for two cam shaped cylinders  

 
Fig. 8 represents changing of cylinder shape from circular 

to cam shaped with same L/D ratio lead (L/D=1.5) to decrease 
drag coefficient about 50-100 percent. 

 

 

Fig. 8 Comparison drag coefficient for the cam and circular cylinder 

V. CONCLUSION 

In this study, flow around two cam shaped cylinders had been 
investigated. The investigation covers the effects of high 
subcritical, supercritical, and transcritical Reynolds numbers 
and L/D ratio on total drag coefficient. Controlled flow 
simulations are performed further with the same grid and 
numerical methods. 

The drag coefficient increases about 100 to 200percent 
respectively when L/D ratio increases from 1.5 to 6.Changing 

the cylinders shape from circular to cam shaped with same 
transverse pitch and longitudinal pitch reduces drag coefficient 
about 50 to 100 percent.  

NOMENCLATURE 

A  Area, m² 
Cd  Drag coefficient, 2Fd /(ρu∞2A) 
CL  Lift coefficient, 2FL /(ρu∞2A) 
d  Small diameter 
D   Large diameter 
L   Distance between centers 
P    Pressure, circumferential length 
Re  Reynolds, number [ρUD/μ] 
SL  Longitudinal pitch 
ST    Transverse pitch 
U       x-direction velocity 
Δt  Time step 
x    x coordinate 
y  y coordinate 

Greek 
ρ  Fluid density 
µ     Fluid dynamic viscosity 
μt  Turbulent viscosity 

Subscripts 
Cam  Cam-shaped cylinder 
Cyl     Cylinder 
eq    Equivalent 
∞        Free stream 
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