Molecular and Electronic Structure of Chromium (III) Cyclopentadienyl Complexes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32794
Molecular and Electronic Structure of Chromium (III) Cyclopentadienyl Complexes

Authors: Salem El-tohami Ashoor

Abstract:

Here, we have shown the reaction of [Cr(ArN(CH2)3NAr)2Cl2] (1) where (Ar = 2,6-Pri 2C6H3) and in presence of NaCp (2) (Cp= C5H5 = cyclopentadien), with a center coordination η5 interaction between Cp as co-ligand and chromium metal center, for optimization we used density functional theory (DFT), under methods, explicitly including electrons correlations, for the final calculations as MB3LYP (Becke) (Lee–Yang–Parr) level of theory we used to obtain more exact results. This complex was calculated as electronic energy for molecular system, because the calculation accounting all electrons correlations interactions. The optimised of [Cr(ArN(CH2)3NAr)2(η5-Cp)] (Ar = 2,6-Pri2C6H3 and Cp = C5H5) was found to be thermally stable. By using Dewar-Chatt-Duncanson model, as a basis of the molecular orbital (MO) analysis and showed the highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital LUMO.

Keywords: Chromium (III) cyclopentadienyl complexes, DFT, MO, HOMO, LUMO.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1109766

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1227

References:


[1] P. M. Morse. Chem. Eng. News., vol. 24, 1999, 11.
[2] F. A. Cotton. Murillo, L. A.; Walton, R. A. Multiple Bonds Between Metal Atoms, 3rd ed.; Springer: Berlin, 2005.
[3] Edema, J. J. H.; Gambarotta, S. Comments Inorg. Chem. vol. 11, 1991, 195.
[4] F. H. Allen, Acta Crystallogr. vol. B58, 2002, 380.
[5] F. A. Cotton, S. A. Koch and M. Millar Inorg. Chem. vol 17, 1978, 2084.
[6] T. Nguyen. A. D. Sutton, M. Brynda, J. C. Fettinger, J. G. Long and P. P. Power. Science, vol 310, 2005, 844.
[7] M. Brynda, L. Gagliardi, P. O. Widmar, P. P. Power and B. O. Roos, Angew. Chem., Int. Ed. vol 45, 2006, 3804.
[8] L. Gagliardi, Nature, vol. 433, 2005, 848.
[9] B. O. Roos and C. Collect. Chem. Commun. vol. 68, 2003, 265.
[10] F. Wolff, C. Lorber, R. Choukroun and B. Donnadieu, Inorg. Chem., vol. 42, 2003, 7839.
[11] M. Bochmann, J. Chem. Soc., Dalton Trans., 1996, 255.
[12] Yi. Tsai, P. Wang, S. Chen and J. Chen, J. Am. Chem. Soc., vol. 129 (26), 2007, 8066–8067.
[13] J. C. Doherty, K. H. D. Ballem, B. O. Patrick, and K. M. Smith., Organometallics, vol. 23, 2004, 1487.
[14] SchrodingeE., Ann. Phys. 1926, 81, 109.
[15] T. Ziegler, “Density functional theory as a practical tool for the study of elementary reaction steps in organometallic chemistry,” Pure and Applied Chemistry, vol. 63, pp. 873–878, 1991.
[16] P. M. W. Gill, B. G. Johnson, J. A. Pople, and M. J. Frisch, “The performance of the Becke-Lee-Yang-Parr (B-LYP) density functional theory with various basis sets,” Chemical Physics Letters, vol. 197, no. 4-5, pp. 499–505, 1992.
[17] F. F. Jian, P. S. Zhao, Z. S. Bai, and L. Zhang, “Quantum chemical calculation studies on 4-phenyl-1-(propan-2- ylidene)thiosemicarbazide,” Structural Chemistry, vol. 16, no. 6, pp. 635–639, 2005.
[18] R. Choukroun, C. Lorber, L. Vendier and B. Donnadieu, Organometallics, vol. 23, 2004, 5488.
[19] J. Chatt and L. A. Duncanso, J. Chem. Soc., 1953, 2939.
[20] P. Hunt, B. Kirchner and T. Welton, Chem. Eur. J, vol 12(26), 2006, 6762-6775.
[21] "Introduction to Computational Chemistry" by F. Jensen, John Wiley & Sons, Chichester, 2003.
[22] S. W. Ohlinger, P. E. Klunzinger, B. J. Deppmeier, W. J. Hehre, The Journal of Physical Chemistry A, vol. 113(10), 2009, 2165–2175.
[23] M. F. Bickelhaupt, N. J. R. Hommes, C. F. Guerra, E. J. Baerends, Organometallics, vol. 15 (13), 1996, 2923–2931.