
1

Abstract—The need to merge software artifacts seems inherent
to modern software development. Distribution of development over
several teams and breaking tasks into smaller, more manageable
pieces are an effective means to deal with the kind of complexity. In
each case, the separately developed artifacts need to be assembled as
efficiently as possible into a consistent whole in which the parts still
function as described. In addition, earlier changes are introduced into
the life cycle and easier is their management by designers.
Interaction-based specifications such as UML sequence diagrams
have been found effective in this regard. As a result, sequence
diagrams can be used not only for capturing system behaviors but
also for merging changes in order to create a new version. The
objective of this paper is to suggest a new approach to deal with the
problem of software merging at the level of sequence diagrams by
using the concept of dependence analysis that captures, formally, all
mapping, and differences between elements of sequence diagrams
and serves as a key concept to create a new version of sequence
diagram.

Keywords—System behaviors, sequence diagram merging,

dependence analysis, sequence diagram slicing.

I. INTRODUCTION

RACTICAL software systems are constantly changing in
response to changes in user needs and the operating

environment. This arises when new requirements are
introduced into an existing system, specified requirements are
not correctly implemented, or the system is to be moved into a
new operating environment. One way to cope with this
problem is to manage individually each change in a separate
and independent way leading to a new version by merging
those changes.

The need to merge software artifacts seems inherent to
modern software development. On the one hand, the
development may be distributed over several teams to
leverage different expertise, experience or capabilities. On the
other hand, breaking a task into smaller, more manageable
pieces often is an effective means to deal with the kind of
complexity [1], [2].

In each case, the separately developed artifacts need to be
assembled as efficiently as possible into a consistent whole in
which the parts still function as described. While support for
merging is required for a large variety of artifacts, it appears
particularly necessary for requirements. This is because
requirements are especially prone to change and evolution [3].
Due to the increasing size and complexity of software

Z.E.Bouras and A. Talai are with the Department of Mathematics and

Computer Sciences, EPST Annaba Algeria (Phone: 00213560369147,
00213542370893 e-mail: z. bouras@epst-annaba.dz, a.talai@epst-annaba.dz).

applications, the design, and specification have become an
important activity in the software life cycle [4].

Interaction-based specifications such as UML sequence
diagrams have been found effective in this regard, as they
describe system requirements in the most intuitive way. A
sequence diagram captures dynamic aspects of a system by
means of messages and corresponding responses of
collaborating objects. In other words, method calls,
parameters, return values, and the collaborating objects can be
explicitly modeled in a sequence diagram. As a result,
sequence diagrams can be used not only for capturing system
behaviors but also for merging changes in order to create a
new version. In addition, earlier changes are introduced into
the life cycle and easier is their understanding by designers. In
this way, two versions of a concurrently evolved sequence
diagram have to be combined into one consolidated, correct
sequence diagram using information from the original
sequence diagram and the associated variants. This includes
addressing problems like (1) understanding what a sequence
diagram does and how it works, (2) capturing the differences
between several sequence diagrams, and (3) creating new
sequence diagram by combining pieces of old sequence
diagrams.

The objective of this paper is to suggest an approach to
overcome these problems by using dependency analysis with
the concept of slicing. Dependency analysis is a technique that
facilitates the understanding while slicing captures, formally,
all mapping and differences between elements of sequence
diagrams and serves as a key concept to create a new version
of sequence diagram. This paper will show the applicability of
this algorithm through an appropriate example.

The remainder of this paper is structured around the
following sections. The related works are described in Section
II. Section III is dedicated to the concepts needed in this work
and the running example to be used throughout this paper.
Section IV details our approach by presenting the general
algorithm, its formalization, and its applicability via the
running example.

II. RELATED WORKS

Software engineering research deals extensively with model
merging. We review some recent approaches here. There is a
large volume of work on merging software code; we do not
discuss this work. A complete state of the art is in [1]. Here we
discuss about merging diagrams.

A primitive way to merge diagrams was to translate them
into plain text (e.g. XML). Viewing diagrams as plain text is
not very helpful for differencing and merging [5]. Text-based

Software Evolution Based Sequence Diagrams
Merging

Zine-Eddine Bouras, Abdelouaheb Talai

P

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:9, 2015

2091International Scholarly and Scientific Research & Innovation 9(9) 2015 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

9,
 2

01
5

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
02

61
8.

pd
f

tools for differencing and merging are sensitive to changes of
the order in which lines appear in a text file. Therefore,
structure-based algorithms and tools are required for
differencing and merging of software diagrams.

Segurain [6] provides a framework for merging graph
transformation systems. Each transformation system is given
by a type graph and a set of rewrite rules. A mapping between
a pair of graph transformation systems is made up of a
mapping between their type graphs and a set of mappings
between their rules. Rule mappings are required to satisfy
certain properties to avoid undesirable interactions between
different rules. The merge operation is characterized using
pushouts.

Sabetzadeh [7] describes an approach for merging state
machines. A state machine is represented as a set of states, a
set of transitions between states, and a set of variables whose
values vary from state to state. A mapping between a pair of
state machines consists of two parts, a signature map and a
truth map. The signature map describes the correspondences
between the state machines and further establishes a common
vocabulary for the merge. The notion of mapping results in a
straightforward binary merge algorithm for state machines.

Letkeman [8] provides a generic approach for merging
diagrams in the UML notation. Given a pair of diagrams, the
approach first finds the differences between the diagrams and
their common ancestor. The differences are described as a
sequence of elementary transformations for creating, deleting,
and modifying diagram elements. To construct a merge, the
differences are applied to the common ancestor. The work
provides a practical tool for merge and offers interesting
insights about the challenges presented by model merging in a
production environment. Mehra [9] also independently,
proposes a tool-supported approach for merging graphical
diagrams based on computing differences and incorporating
them into a common ancestor. But, in contrast to [8], the
approach conceives of conflict resolution during merge as an
entirely manual process.

Despite their versatility, all related works omit the
consequences of dependence analysis between elements in a
given UML diagram. Dependence analysis involves the
identification of interdependent elements of a system. It is
referred to as a “reduction” technique, since the
interdependent elements induced by a given inter-element
relationship forms a subset of the system [10]. Associated with
a lattice (slicing) dependence analysis provides a mathematical
characterization of the merge operation.

Our approach of merging is based on this association and
applied to merge a specific UML diagram that is sequence
diagram.

III.BASIC CONCEPTS

A. A Motivating Example

The following example about an ATM sequence diagram is
to motivate the approach developed in this paper.

1. Base Sequence Diagram

In the initial ATM system (Base) a session is started when a
customer inserts an ATM card into the card reader slot of the
machine. The ATM pulls the card into the machine and reads
it. The customer is asked to enter his/her PIN, and is then
allowed to perform one or more transactions, choosing from a
menu of possible types of transaction in each case. The
customer chooses a withdrawal transaction. An appropriate
menu is then displayed to choose an amount from a menu of
possible amounts. Customer enters amount. The system
verifies that its balance is sufficient by sending the transaction
to the bank. If the transaction is approved by the bank, the
appropriate amount of cash is dispensed by the machine and
debited immediately from the account before it issues a receipt
and, finally eject the card. Concerned sequence diagram is
depicted by Fig. 1.

Starting from an initial Base Sequence Diagram of ATM
System “Withdraw” Scenario of the suggested example, we
introduce two independent requirement changes that are
expected to be compatible (non-interfering). For this purpose,
two independent copies of Base are first created and then
modified (Variant A and Variant B).

2. Variant A Sequence Diagram

In Variant A, the Read Card action is improved by the fact
that if the reader cannot read the card due to improper
insertion or a damaged stripe, the card is ejected, an error
screen is displayed, and the session is aborted. In addition, a
customer can have several accounts. After entering the
adequate PIN, an appropriate menu is then displayed to choose
an account from a menu of possible accounts. Customer
chooses the concerned account. The objective is to integrate
these new requirements in order to create a new version of
Base.

In Variant A, software designer A inserts new messages to
take account the concerned own changes. This leads to the
following changes: (1) add a message “cannot read card”
between objects Card Reader and ATM Screen just after
“Read Card” method, and (2) add a message “Select Account”
between Customer actor and ATM Screen object after entering
PIN code. Fig. 2 shows the sequence diagram of designer A.
Changes according to Base are depicted in red arrows and
characters.

3. Variant B Sequence Diagram

In Variant B and in cases where balance or cash reserve are
insufficient error screens are displayed and customer is asked
to enter a new amount. Software designer B proceeds to the
following changes: (1) inserts a method “Verify cash reserve”
between objects Bank and Cash Dispenser just after
“Withdraw Fund” method, (2) inserts a message “cash reserve
insufficient” between objects Bank and ATM Screen after
verifying cash reserve, and (3) inserts a message “Balance
insufficient” between objects Bank and ATM Screen after
verifying balance. Fig. 3 represents the sequence diagram of
designer B. Changes according to Base are depicted in blue
arrows and characters.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:9, 2015

2092International Scholarly and Scientific Research & Innovation 9(9) 2015 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

9,
 2

01
5

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
02

61
8.

pd
f

Customer

Card Reader ATM Screen Bank Cash Dispenser

1. Accept Card

2. Read Card No

3. Initialize Screen

4. Enter PIN

5. Verify PIN

6. Select Withdraw

7. Enter Amount

8. Withdraw Amount

9. Verify Balance

10. Deduct Amount

11. Provide Cash

12. Provide Receipt

13. Eject Card

Fig. 1 Base Sequence Diagram of ATM “Withdraw”

Customer

Card Reader ATM Screen Bank Cash Dispenser

1. Accept Card

2. Read Card No

4. Initialize Screen

5. Open Account

6. Prompt for PIN

7. Enter PIN
8. Verify PIN

10. Prompt for transaction

11. Select Withdraw

12. Prompt for Amount

13. Enter Amount

14. Withdraw Amount
15. Verify Balance

16. Deduct Amount

17. Provide Cash

18. Provide Receipt
19. Eject Card

3. Display cannot read card

9. Select Account

Fig. 2 Variant A Sequence Diagram of ATM “Withdraw”

Customer

Card Reader ATM Screen Bank Cash Dispenser

1. Accept Card

2. Read Card No

3. Initialize Screen

4. Enter PIN

5. Verify PIN

6. Select Account

8. Enter Amount 9. Withdraw Amount

12. Verify Balance

14. Deduct Amount

15. Provide Cash

16. Provide Receipt17. Eject Card

10. Verify Cash Reserve

11. Display Cash Reserve Insufficient

13. Display Balance Insufficient

7. Select Withdraw

Fig. 3 Variant B Sequence Diagram of ATM “Withdraw”

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:9, 2015

2093International Scholarly and Scientific Research & Innovation 9(9) 2015 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

9,
 2

01
5

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
02

61
8.

pd
f

B. Concepts

1. Dependency Analysis

Dependency analysis is a useful technique that has many
applications in software engineering activities including
software understanding, testing, debugging, maintenance, and
evolution [11]-[13]. Dependence analysis involves the
identification of interdependent elements of a system. It is
referred to as a “reduction” technique, since the
interdependent elements induced by a given inter-element
relationship forms a subset of the system [10]. So it is very
important to understand element’s context and its running
environment in order to efficiently manage all kinds of
dependencies. In general, as soon as a new element is
installed/removed/updated in given software, it has an impact
on a part of the system. The new element may refer to certain
elements, and be used by other elements [14], [15].

2. Sequence Diagram Graphs

UML consists of nine kinds of different diagrams that can
be combined together to provide a complete picture of a
system. The diagrams include use case, class, object,
sequence, collaboration, state, activity, component, and
deployment diagrams. Among them sequence diagram refers
to time dependent sequences of interactions between objects.
They show the sequence of the messages.

Sequence Diagrams have many advantages, but they are not
directly amenable to formal manipulations. Since Sequence
Diagrams are diagrammatic, a formalization based on graph-
based structures seems to be advantageous. Indeed, graph-
based formalisms possess the following desirable properties:
they (i) provide a foundation for a large class of software
specifications, e.g., Sequence Diagrams, (ii) have solid
theoretical foundations, and (iii) have tool support. Thus,
graph-based structures are amenable to effective
manipulations. Moreover, a Sequence Diagram has an
(implicit) structural base that is a set of interacting objects and
the types of messages can exchange. A transformation as a
graph makes both the behavior and the structural base explicit.

Thus, we use the transformation of sequence diagram as a
graph representation proposed by [16]. In such approach, the
Model Flow Graph (MFG) represents the possible
message/method sequences in an interaction. A MFG can be
viewed as a graph G= (V, E), where V is a set of nodes of G,
and E is a set of edges. The nodes of G represent messages
and edges represent transition between two nodes exists, if the
corresponding messages in the sequence diagram occur one
after the other. The message that initiates the interaction is
made the root of the graph.The MFG for sequence diagram is
created by (1) Associating methods in the sequence diagram
with their originating objects (by using object Method
Association Table), and (2) Traversing the sequence diagram
from beginning to end, showing choices and condition for
method execution. For example, Table I is the Object Method
Association Table of Base Sequence Diagram (Fig. 1) and the
resulting Model flow Graph is presented in Fig. 4.

TABLE I
OBJECT METHOD ASSOCIATION TABLE OF FIG. 1

Symbol Object Method Association

A Card Reader: Accept Card

B Card Reader: Read Card No

C ATM Screen: Initialize Screen

D ATM Screen: Prompt for Pin

E Bank: Verify PIN

F ATM: Ready for Withdraw

G ATM: Ready for Amount

H Bank: Withdraw Amount

I Bank: Verify Balance

J Bank: Deduct Amount

K Cash Dispenser: Provide cash

L Cash Dispenser: Provide Receipt

M Card Reader: Eject Card

A

I

H

G

F

E

D

C

B

L

K
J

M

Fig. 4 MFG of Base Sequence Diagram of ATM “Withdraw”

Scenario

3. Sequence Diagram Slicing

When a maintenance programmer wants to modify a
component in order to satisfy new requirements, the
programmer must first investigate which components will
affect the modified component and which components will be
affected by the modified component. By using a slicing
method, the programmer can extract the parts containing those
components that might affect, or be affected by, the modified
component. This can assist the programmer greatly by
providing such change impact information.

Using sequence diagram slicing to support change impact
analysis promises benefits for sequence diagram evolution.
Slicing is a particular application of dependence graphs.
Together they have come to be widely recognized as a
centrally important technology in software engineering.
Because they operate on the deep structure in programs rather
than surface structures, they enable much more sophisticated
and useful analysis capabilities than conventional tools [7].

Traditional slicing techniques cannot be directly used to
slice sequence diagram. Therefore, to perform slicing at the
sequence diagram level, appropriate slicing notions must be

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:9, 2015

2094International Scholarly and Scientific Research & Innovation 9(9) 2015 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

9,
 2

01
5

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
02

61
8.

pd
f

defined with new types of dependence relationships.
To calculate a slice it is first required to transform a

sequence diagram into a suitable intermediate representation
that is Model Flow Graph (MFG).A slice for a specific
scenario can be computed by identifying the different
elements and the dependencies among them from MFG. These
elements are identified based on a certain condition termed as
a slicing criterion. In our case we use slicing technique to find
out slices at each message point in a sequence diagram. A
slice contains only those parts of a sequence diagram that
actually affect a value at each message point. In our case the
slicing criterion (m, V) specifies a message location m in the
sequence diagram and V is the set of all locations that are used
in the location m. For example, if we want to find the set of all
locations (H) that affect the “Withdraw Amount” from Bank
object (m) by applying slicing concept we proceed as the
following simple algorithm through the MFG: “initialize an
empty set of message locations m. Start by adding all nodes
preceding m that have a direct link with m. For any node, add
all message locations that precede m and that affect a required
property of this message location. Repeat this procedure until
no message locations are found”. From MFG of Fig. 4, we
obtain the following sub graph (Fig. 5) that reflects all actions
that affect “Withdraw Amount” action. “Withdraw Amount”
(H)action is affected by: Accept Card (A), Initialize Screen
(B), Prompt for Pin (C), Verify PIN (D), Ready for Withdraw
(H), and Ready for Amount (H).

4. Graph Similarities

Comparing two graphs needs at first to find, for a given
node (or edge) in a graph, its corresponding node (or edge) in
the other; this can be done by signature and structural
matching [17].

A pair of corresponding elements needs to share a set of
properties, which can be a subset of their syntactical
information. Such properties may include type information,
which can be used to select the elements of the same type
from the candidates to be matched because only elements with
the same type need to be compared. Therefore, a combination
of syntactical properties for a node or an edge can be used to
identify different elements. Such properties are called the
signature, and are used as the first criterion to match elements
as proposed by [17].

The algorithm first needs to find all the candidate nodes in
MFG2 that have the same signature as node v1 in MFG1. If
there is only one candidate found in MFG2, the identified
candidate is considered as a unique mapping for v1 and they
are considered as syntactically equivalent. If there is more
than one candidate that has been found, the signature cannot
identify a node uniquely. Therefore, v1 and its candidates in
MFG2 will be sent for further analysis where structural
matching is performed. Structural matching is based on
calculation of Graph Similarity using Maximum Common
Edge subgraphs [18]. The first algorithm to find the candidate
node with maximal edge similarity for a given host node from
a set of candidate nodes takes the host node and a set of
candidate nodes of N2 as input, computes the edge similarity

of every candidate node and returns a candidate with maximal
edge similarity. The second algorithm for computing edge
similarity between a candidate node and a host node takes two
maps as, input, stores all the incoming, in, and outgoing edges
of the host and candidate nodes indexed by their edge
signature. By examining the mapped edge pairs between these
two maps, the algorithm computes the edge similarity as
output.

All nodes in N1 have been examined by signature and
structural matching; all possible node mappings between N1
and N2 are found.

Fig. 5 Slicing MFG with slice criterion (“Withdraw Amount”, MFG)

IV. APPROACH OF MERGING

Our merging process consists of the following steps: (1)
start from a Base Sequence Diagram, (2) build a set of variants
(resulting from Base changes), (3) compare each variant with
the Base, (4) determine the sets of changed and preserved
slices, and (5) combine these sets to form a single integrated
new version (if changes don’t interfere). Steps (1) and (2) are
done concurrently by software architects, details of steps (3)
and (4) are described below.
Step3. Compare each variant with the base:
a. Build the MFGs of the Sequence Diagrams Base and

variants.
b. Extract, from each MFG, its associated slices.
c. From each Variant MFG, determine peer nodes according

to Base MFG by using graph similarities
d. For each Variant MFG
d.1. Map each slice of the Base MFG with its peer in variant.
d.2. Determine and collect changed and preserved slices.
Step4. Combine changed and preserved slices to form a new

MFG.
a. Merge preserved of base and changed slices of variants.
b. Check that variants do not interfere
c. Derive the resulting MFG.
d. Generate the Sequence Diagram of the new version from

the resulting MFG.
Steps 3.a and 3.b have already been solved, in [19]. Our

contribution in this paper is to develop the sub-steps from 3.c
until the end of the process in order to merge sequence
diagrams. In the following, we formalize these sub-steps. We
formalize and illustrate each step through our motivating
example of Section III.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:9, 2015

2095International Scholarly and Scientific Research & Innovation 9(9) 2015 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

9,
 2

01
5

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
02

61
8.

pd
f

A. Build MFGs of Sequence Diagrams

MFG of Base (MFGBase) was constructed previously in
Section III (Fig. 4) and with the same manner we construct the
Model Flow Graph MFGA and MFGB of Variant A and B
respectively. Fig. 6 illustrates the MFGB of Variant B,
sequence diagram done by Software designer B.

Fig. 6 MFG of Variant B (MFGB)

B. Extract Associated Slices

Any slice can be computed by identifying the different
elements and the dependencies among them from MFG. These
elements are identified based on a certain condition termed as
a slicing criterion. In our case we use slicing technique to find
out slices at each message point in a sequence diagram, that is
at each node in MFG. A slice contains only those parts of a
sequence diagram that actually affect a value at each message
point. In our case the slicing criterion (m, V) specifies a
message location m in the sequence diagram and V is the set
of all locations that are used in the location m. We proceed as
the following simple algorithm through the MFG: “initialize
an empty set of message locations m. Start by adding all nodes
preceding m that have a direct link with m. For any node, add
all message locations that precede m and that affect a required
property of this message location. Repeat this procedure until
no message locations are found”. Fig. 5 of Section III reflects
an example of slice extraction.

C. Determine Peer Nodes Using Graph Similarities

Comparing two graphs needs at first to find, for a given
node (or edge) in a graph, its corresponding node (or edge) in
the other; this can be done by signature and structural
matching [17]; this was detailed in Section III.

Let (node1, node2), where node1 is a node in Base and
node2 a node in a variant. (node1, node2) denotes that it exists
a node similarity between node1 and node2.

Node similarities between Base and Variant A are the
following sets:

SimBase_VarA= {(A,A), (B,B), (C,D), (D,E), (E,F), (F,H),

(G,I), (H,J), (I,K), (J,L), (K,M), (L,N), (M,O)}.

C and G are new nodes in Variant A.

SimBase_VarB= {(A,A), (B,B), (C,C), (D,D), (E,E), (F,F),
(G,G), (H,H), (I,K), (J,M), (K,N), (L,O), (M,P)}.

I, J, and L are new nodes in Variant B.

D. Determining and Collecting Changed and Preserved
Slices

Given MFGs MFGBase, MFGA, and MFGB, the algorithm
performs three steps. The first step identifies three subgraphs
that represent the changed behavior of A with respect to
Base(A, Base), the changed behavior of B with respect to Base
(X, Base) and the preserved behavior that is the same in all
MFGs (PreA,B,Base) by using the set of vertices whose slices in
MFGBase, MFGA, and MFGB are identical (i.e. PPA,B,Base). The
second step unifies these subgraphs to form a merged model
dependence graph MFGM. In the third step, a merged sequence
diagram GM is produced from graph MFGM.

1. Changed Slices

Let X, Basethe set of all changed slices between the variant
X and Base. Changed slices are computed as the following:

APA, Base={v V(MFGA) (MFGBase/v) ≠(MFGA/v)}
APB, Base={v V (MFGB) (MFGBase/v) ≠(MFGB/v)}
A, Base= b(MFGA, APA, Base)
B, Base=b(MFGB, APB, Base).

where, V(MFGx) denotes the set of vertices in MFG of variant
X.MFGX/v is a vertex in the MFG of X from where we want to
inspect its impact in the overall MFG of X. b(MFGX, APX, Base)
is the set of peer changed slices when comparing MFGBase and
MFGX. For example, slicing MFG from Base with slice
criterion (“Withdraw Amount”, MFGBase), in Fig. 6, differs
from Slicing MFG from Variant A with slice criterion
(“Withdraw Amount”, MFGA) in Fig. 7. Thus, the last one
slice belongs to the set of changed slices.

Fig. 7 Slice from Variant A with slice criterion (“Withdraw Amount”,

MFGA)

2. Preserved Slices

Preserved MFGs slices (PreA, Base, B) are computed as:

PPA, Base, B = {v V(MFGBase) (MFGA/v) =(MFGBase/v)
=(MFGB/v)}.

PreA, Base, B=(GBase, PPA, Base, B)

In our example there is only one slice preserved in all
MFGs, that is the sub-graph from node A to node B. This
belongs to set of preserved slices.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:9, 2015

2096International Scholarly and Scientific Research & Innovation 9(9) 2015 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

9,
 2

01
5

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
02

61
8.

pd
f

E. Forming Merged MFG

The merged model flow graph MFGM characterizes the
MFG of the new version of the sequence diagram. GM is
computed as:

GM =A, BaseB, BasePreA, Base, B.

Informally, slices that are changed in variants A and B with

respect to Base and those that are unchanged in all sequence
diagrams form the merged graph GM.

The new version of sequence diagram (Fig. 9) is obtained,
finally, from the merged MFG of Fig. 8.

Fig. 8 MFG of the new version

Customer

Card Reader ATM Screen Bank Cash Dispenser

1. Accept Card
2. Read Card No

4. Initialize Screen 5. Open Account

6. Prompt for PIN

7. Enter PIN

8. Verify PIN

9. Select Account

10. Select Withdraw

11. Prompt for Amount

12. Enter Amount 13. Withdraw Amount

16. Verify Balance

18. Deduct Amount

19. Provide Cash

20. Provide Receipt21. Eject Card

14. Verify Cash Reserve

15. Display Cash Reserve Insufficient

17. Display Balance Insufficient

3. Display cannot read card

Fig. 9 New version of Sequence Diagram

V. CONCLUSION

Merging sequence diagram changes approaches allows for
concurrent modifications, of the same sequence diagram by
several developers, and merging them to obtain ultimately one
consolidated version of sequence diagram again. In this paper
we have shown that techniques of Software merging, initially
defined to cope with program merging and extended to model
merging, may be also used to bring the sequence diagram
merging issue. The main benefit is that “earlier changes are
introduced into the lifecycle and easier is their understanding
by designers”.

Beginning with the idea that sequence diagrams are graphs
with particular nodes and edges, we capture all mapping and
difference between concepts and merge them into a new
consolidate version by using a power issue in software
engineering that is the dependence analysis. A concrete

example illustrated the suggested approach.

REFERENCES
[1] T. Mens, “A State-of-the-Art Survey on Software Merging”, IEEE

Trans. on Software Engineering, Vol 28 No 5, pp. 449–462.
[2] P. Brosch, G. Kappel, P. Langer, M. Seidl, K. Wieland, and M.

Wimmer, “An Introduction to Model Versioning”, Proc. Of the 12th
international conference on Formal Methods for the Design of
Computer, Communication, and Software Systems, SFM 2012, Springer-
Verlag Berlin Heidelberg, pp. 336–398.

[3] H. Liang, Z. Diskin, J. Dingel, and E. Posse, “A General Approach for
Scenario Integration”,Proc. ofthe11th International Conference on
Model Driven Engineering Languages and Systems, MoDELS’08, 2008.

[4] E. Ogheneovo, “On the Relationship between Software Complexity and
Maintenance Costs”. Journal of Computer and Communications, vol2,
pp. 1-16, 2014.

[5] D. Ohst, M. Welle, and U. Kelter, “Differences between versions of
UML diagrams”, Proc. of ESEC/FSE-11, pages 227–236, New York,
NY, USA.ACM Press.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:9, 2015

2097International Scholarly and Scientific Research & Innovation 9(9) 2015 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

9,
 2

01
5

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
02

61
8.

pd
f

[6] S. Segura, R. M. Hierons, D. Benavides, and A. Ruiz-Cortes,
“Automated metamorphic testing on the analyses of feature models”.
Information and Software Technology, vol53, No 3, pp.245–258, 2011.

[7] M. Sabetzadeh, S. Nejati, S. Liaskos, S. M. Easterbrook, and M.
Chechik, “Consistency checking of conceptual models via model
merging”. Proc. of Requirement Engineering, RE 2007.IEEE,pp. 221-
230, 2007.

[8] K. Letkeman, “Comparing and Merging UML Models in IBM Rational
Software Architect”, IBM, Aug. 2005.

[9] A. Mehra, J. Grundy, and J. Hosking, “A Generic Approach to
Supporting Diagram Differencing and Merging for Collaborative
Design”, Proc. of the 20th IEEE/ACM International Conference on
Automated Software Engineering, ASE’05, pages 204–213, 2005.

[10] J.A. Stafford, A. L. Wolf, and M. Caporuscio “The Application of
Dependence Analysis to Software Architecture Descriptions”,
3rdInternational School on Formal Methods for the Design of
Computer, Communication and Software Systems: Software
Architectures, SFM 2003, Bertinoro, Italy, September 22-27, pp. 52-62,
2003.

[11] T. Kim, Y. Song, and L. Chung, “Software architecture analysis: a
dynamic slicing approach”, International Journal of Computer &
Information Science, vol 1, no 2, pp. 91-103, 2000.

[12] J. Zhao, “Using dependence analysis to support software architecture
understanding”, CoRR, vol. cs.SE/0105009, 2001.

[13] B. Li, “Managing Dependencies in Component-Based Systems Based on
Matrix Model” Proc. of Net. Object. Days, pp. 22-25, 2003.

[14] B. Li, Y. Zhou, Y. Wang, and J. Mo, “Matrix-based component
dependence representation and its applications in software quality
assurance” SIGPLAN Notices, vol 40, no 11, pp. 29–36, 2005.

[15] J. Lalchandani, “Static Slicing of UML Architectural Models”, Journal
of Object Technology, vol 8, no 1, pp. 159-188, 2009.

[16] S. Kumar, D. P. Mohapatra, “Test Case Generation from Behavioral
UML Models”, International Journal of Computer Applications, vol 6,
no8, September 2010.

[17] Y. Wang, J. DeWitt, and J. Cai, “X -Diff: An Effective Change
Detection Algorithm for XML Documents”, Proc. of19th Intern.
Conference on Data Engineering, India, pp. 519-530.

[18] J. Raymond, E. Gardiner, and P. Willett, “RASCAL: Calculation of
Graph Similarity using Maximum Common Edge Subgraphs”, The
Computer Journal, vol45, no 6, pp. 631-644, 2002.

[19] P. Samuel, R. Mall, “Slicing-Based Test Case Generation from UML
Activity Diagrams”, ACM SIGSOFT Software Engineering Notes, Vol
34 No 6, November 2009.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:9, 2015

2098International Scholarly and Scientific Research & Innovation 9(9) 2015 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

9,
 2

01
5

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
02

61
8.

pd
f

