**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**30172

##### Entropy Generation and Heat Transfer of Cu–Water Nanofluid Mixed Convection in a Cavity

**Authors:**
Mliki Bouchmel,
Belgacem Nabil,
Abbassi Mohamed Ammar,
Geudri Kamel,
Omri Ahmed

**Abstract:**

**Keywords:**
Entropy generation,
mixed convection,
nanofluid,
lattice Boltzmann method.

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1109239

**References:**

[1] M. Aghajani Delavar, M. Farhadi, K. Sedighi, “Effect of the heater location on heat transfer and entropy generation in the cavity using the lattice Boltzmann method,”Heat Trans. Res, vol. 40, 2009, pp. 505-519.

[2] E. Fattahi, M. Farhadi, K. Sedighi, “Lattice Boltzmann simulation of natural convection heat transfer in eccentric annulus,” Int. J. Therm. Sci, vol. 49, 2010, pp. 2353-2362

[3] H. Huang, Z. Li, S. Liu, X.Y. Lu, “Shan-and-Chen-type multiphase lattice Boltzmann study of viscous coupling effects for two-phase flow in porous media,” Int. J. Numerical Methods Fluids, vol. 61, 2009, pp. 341-354

[4] M. Mahmodi, S. M. Hashemi, “Numerical study of natural convection of a nanofluid in C-shaped enclosures,” Int. J. Thermal Sci, vol. 55, 2012, pp. 76-89

[5] M. Kalteh, H. Hasani, “Lattice Boltzmann simulation of nanofluid free convection heat transfer in an L-shaped enclosure,” Super lattices and Microstructures, vol. 66, 2014, pp. 112–128.

[6] H. Reza, M. Mohsen, “Magnetic field effects on natural convection flow of a nanofluid in a horizontal cylindrical annulus using Lattice Boltzmann method,” Int. J. Thermal Sci, vol. 64, 2013, pp. 240-250.

[7] U.S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles, developments and application of non-Newtonian flows, ”ASME, vol. 66, 1995, pp. 99–105.

[8] K. Khanafer, K. Vafai, M. Lightstone, “Buoyancy-driven heat transfer enhancement in a two dimensional enclosure utilizing nanofluid,” Int. J. Heat Mass Transfer, vol. 46, 2003, pp. 3639–3653.

[9] F.H. Lai, Y.T. Yang, “Lattice Boltzmann simulation of natural convection heat transfer of Al2O3/water nanofluids in a square enclosure, ” Int. J. Therm. Sci, vol. 50, 2011, pp. 1930–1941.

[10] Z. Alloui, P. Vasseur, M. Reggio, “Natural convection of nanofluids in a shallow cavity heated from below, ” Int. J. Therm. Sci, vol. 50, 2011, pp. 385–393.

[11] Y. He, C. Qi, Y. Hu, B. Qin, F. Li, Y. Ding, “Lattice Boltzmann simulation of alumina–water nanofluid in a square cavity, ” Nanoscale Res. Lett, vol. 6, 2011, pp. 1–8.

[12] C.J. Ho, W.K. Liu, Y.S. Chang, C.C. Lin, “Natural convection heat transfer of alumina–water nanofluid in vertical square enclosures: an experimental study,” Int. J. Therm. Sci, vol. 49, 2010, pp. 1345–1353.

[13] J. Rahmannezhad, A. Ramezani, M. Kalteh, “Numerical investigation of magnetic field effects on mixed convection flow in a nanofluid-filled liddriven cavity,” Int. J. Eng. Trans. A: Basics, vol. 26, 2013, pp. 1213– 1224.

[14] A. Mahmoudi,I. Mejri,M. Ammar Abbassi, A. Omri, “Numerical Study of Natural Convection in an Inclined Triangular Cavity for Different Thermal Boundary Conditions: Application of the Lattice Boltzmann Method,” FDMP, vol. 9, 2013, pp. 353-388.

[15] I. Mejri, A. Mahmoudi,M. Ammar Abbassi, A. Omri, “Numerical Study of Natural Convection in an Inclined Triangular Cavity for Different Thermal Boundary Conditions: Application of the Lattice Boltzmann Method,” FDMP, vol. 9, 2013, pp. 353-388.

[16] G.A. Sheikhzadeh, A. Arefmanesh, M.H. Kheirkhah, R. Abdollahi, “Natural convection of Cu–water nanofluid in a cavity with partially active side walls,” Eur. J. Mech. B-Fluid, vol. 30, 2011, pp. 166–176.

[17] E. Abu-Nada, H.F. Oztop,“Effects of inclination angle on natural convection in enclosures filled with Cu-water nanofluid,” Int. J. Heat Fluid Fl, vol. 30, 2009, pp. 669–678.

[18] S.M. Aminossadati, B. Ghasemi, “Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure,” Eur. J. Mech. B-Fluid, vol. 28, 2009, pp. 630–640.

[19] M. Jahanshahi, S.F. Hosseinizadeh, M. Alipanah, A. Dehghani, G.R. Vakilinejad, “Numerical simulation of free convection based on experimental measured conductivity in a square cavity using Water/SiO2 nanofluid,” Int. Commun. Heat Mass Transfer, vol. 37, 2010, pp. 687– 694.

[20] A. Akbarnia, A. Behzadmehr, “Numerical study of laminar mixed convection of a nanofluid in horizontal curved tubes,” Appl. Therm. Eng, vol. 27, 2007, pp. 1327–1337.

[21] S. Mirmasoumi, A. Behzadmehr, “Effect of nanoparticles mean diameter on mixed convection heat transfer of a nanofluid in a horizontal tube,” Int. J. Heat Fluid Fl, vol. 29, 2008, pp. 557–566.

[22] T. Basak, S. Roy, P.K. Sharma, I. Pop, “Analysis of mixed convection flows within a square cavity with uniform and non-uniform heating of bottom wall,” Int. J. Therm. Sci, vol. 48, 2009, pp. 891–912.

[23] G. Guo, M.A.R. Sharif, “Mixed convection in rectangular cavities at various aspect ratios with moving isothermal sidewalls and constant flux heat source on the bottom wall,” Int. J. Therm. Sci, vol. 43, 2004, pp. 465–475.

[24] R.K. Tiwari, M.K. Das, “Heat transfer augmentation in a two-sided liddriven differentially heated square cavity utilizing nanofluids,” Int. J. Heat Mass Transfer, vol. 50, 2007, pp. 2002–2018.

[25] M.A. Mansour, R.A. Mohamed, M.M. Abd-Elaziz, S.E. Ahmed, “ Numerical simulation of mixed convection flows in a square lid-driven cavity partially heated from below using nanofluid,” Int. Commun. Heat Mass, vol. 37, 2010, pp. 1504–1512.

[26] H. Nemati, M. Farhadi, K. Sedighi, E. Fattahi, A.A.R. Darzi, “Lattice Boltzmann simulation of nanofluid in lid-driven cavity,” Int. Commun. Heat Mass, vol. 37, 2010, pp. 1528–1534.

[27] M. Dalavar, M. Farhadi, K. Sedighi, “Numerical simulation of direct methanol fuel cells using lattice Boltzmann method,” Int. J. Hydrogen Energy, vol. 35, 2010, pp. 9306-9317.

[28] A. Mahmoudi, I. Mejri, M. A. Abbassi, A. Omri, “Lattice Boltzmann simulation of MHD natural convection in a Nanofluids-filled cavity with linear temperature distribution,” Powder Technology, vol. 256, 2014, pp. 257-271.

[29] M. Kalteh, H. Hasani, “Lattice Boltzmann simulation of nanofluid free convection heat transfer in an L-shaped enclosure,” Int. J. Superlat. Micro, vol. 66, 2014, pp. 112–128.

[30] Y. Xuan, Q. Li, “Heat transfer enhancement of nanofluids, Int. J. Heat Fluid Flow, pp. 58–64, 2000.

[31] A. Bejan, “Entropy Generation through Heat and Fluid Flow,” Wiley, New York, 1982.

[32] A. Mahmoudi, I. Mejri, M. A. Abbassi, A. Omri, “Lattice Boltzmann simulation of MHD natural convection in a Nanofluids-filled cavity with linear temperature distribution,” Powder Technology, vol. 256, 2014, pp. 257-271.

[33] U. Ghia, K.N. Ghia, C.Y. Shin, “High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method,” J. Comput. Phys, vol. 48, 1982, pp. 387–411.

[34] H. Khorasanizadeh, M. Nikfar, J. Amani, Entropy generation of Cu– water nanofluid mixed convection in a cavity,” Eur. J. Mech. B. Fluids, vol. 37, 2013, pp. 143–152.