
  

 
Abstract—In this paper we present a classification of the various 

technologies applied for the solution of the portfolio selection problem 
according to the discipline and the methodological framework 
followed. We provide a concise presentation of the emerged categories 
and we are trying to identify which methods considered obsolete and 
which lie at the heart of the debate. On top of that, we provide a 
comparative study of the different technologies applied for efficient 
portfolio construction and we suggest potential paths for future work 
that lie at the intersection of the presented techniques. 
 

Keywords—Portfolio selection, optimization techniques, financial 
models, stochastics, heuristics. 

I. INTRODUCTION 

INCE the seminal work by Markowitz [19] and his Mean – 
Variance theory (MV) the Portfolio Selection problem has 

attracted considerable attention by both academics and 
practitioners. People from such diverse fields as finance, 
engineering, mathematics, computing, operational research, 
statistics and psychology have attempted to explain the forces 
behind the financial markets movements [15], [16].  

In this paper we taxonomise the various techniques used for 
constructing efficient portfolios into five distinct categories 
according to the discipline and the methodological framework 
followed. We provide a concise presentation of the emerged 
categories and we are trying to identify which methods 
considered obsolete and which lie at the heart of the debate. 
Additionally we present a comparative study of the different 
technologies applied for efficient portfolio construction and we 
suggest potential paths for future work that lie at the 
intersection of the presented techniques.  

The rest of the paper is organized as follows. In Section II we 
provide a concise overview of the emerged classifications of 
techniques for constructing efficient portfolios. In Section III 
we present a comparative study of the different technologies 
applied for efficient portfolio construction. Finally, in Section 
IV, we present our conclusions from the comparative study of 
the presented techniques. 
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II. TECHNOLOGIES FOR EFFICIENT PORTFOLIO CONSTRUCTION 

A. Financial Approaches 

The earliest financial techniques for constructing efficient 
portfolios were based on analyzing the publicly available stock 
listings and trying to identify potential patterns and trends. Two 
major distinct methodological frameworks emerged. The first 
one, the so called Fundamental Analysis, is based on the 
analysis of the financial statements. Fundamental Analysis 
focuses exclusively on the company’s performance in order to 
determine whether or not the stock should be bought or sold. 
The Technical Analysis on the other hand disregards 
completely the value of financial statements analysis and 
focuses exclusively on the movement of the stock prices in 
order to determine whether to buy or sell a particular stock. 
While techniques for selecting stocks can be traced back to the 
19th century, it was not until the 1952, when Markowitz 
introduced his pioneering Mean - Variance (MV) portfolio 
selection model, that the field attracted considerable attention. 
Markowitz’s theory suggests maximizing portfolio expected 
return for a given amount of portfolio risk or solving its dual 
problem minimizing portfolio risk for a given level of expected 
return.  

Among the various models, distinguished place have the 
Black-Scholes model [2] a tool for pricing a stock option. The 
basic idea behind the Black-Scholes model is that the price of 
an option is determined implicitly by the price of the underlying 
stock. The Black-Scholes model displayed the importance of 
mathematics in the field of finance and it also led to the rapid 
development of a new field of research the so called financial 
engineering. 

One of the most well-known theories in the field of finance is 
the Efficient Market Hypothesis (EMH). It was proposed by 
Eugene Fama [10] in 1960s and shortly states that one cannot 
achieve returns in excess of the average market returns because 
share prices always reflect all relevant information. According 
to the EMH stocks always trade at fair value on exchanges 
making it impossible to gain by purchasing undervalued stocks. 
However the stock market crash of 1987 put into question the 
validity of the EMH and gave the opportunity to other theories 
to emerge. Although the influence of psychology on the 
investors and the subsequent effect on markets was known, it 
was not until the aftermaths of the stock market crash of 1987 
that the Behavioural Finance gained wide recognition. Briefly, 
Behavioural Finance focuses upon how investors interpret and 
act on information to make informed investment decisions. 
According to this theory investors do not always behave in a 
rational and unbiased manner. Behavioural Finance examines 
how investors’ behaviour can lead to various market anomalies.  
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Fig. 1 Financial Methods in Portfolio Management 

B. Mathematical Approaches 

The Mathematical Approaches for constructing Efficient 
Portfolios can be clustered into four different groups depending 
on the applied methodology. The first classification deals with 
portfolio selection problems that are formulated as linear 
programming (LP) problems. A LP problem is one in which the 
objectives and all of the constraints are linear functions of the 
decision variables. The Mean Absolute Deviation (MAD) 
portfolio optimization model proposed by Konno and 
Yamazaki [13] is a well-known example of a portfolio selection 
model that can be formulated as a linear programming problem. 
Another example is the Minimax (MM) model that can be also 
formulated as a LP problem. The LP formulation presents some 
major advantages like its implementation is relatively easy and 
it guarantees to find optimal solution. The most well-known LP 
technique is the Simplex method developed by Dantzig [6]. 
Briefly, the Simplex method is a method that proceeds from one 
basic feasible solution (BFS) or extreme point of the feasible 
region of a LP problem expressed in tableau form to another 
BFS, in such a way to continually increase (or decrease) the 
value of the objective function until optimality is reached. The 
second classification of Portfolio Selection problems 
formulation concerns the Quadratic Programming (QP) 
problems. A QP problem has an objective which is a quadratic 
function of the decision variables, and constraints which are all 
linear functions of the variables. The Mean-Variance (MV) 
portfolio selection model introduced by Markowitz [19] is the 
most well-known example of this category of problems. The 
classical MV model is a convex QP problem which can be 
solved by a number of algorithms with a moderate 
computational effort even for relatively large number of 
portfolio stocks. However, if we apply to the classical MV 
model some realistic constraints like for instance cardinality 
constraint and buy-in threshold the problem is no longer a 
convex optimization problem because of the non-convexity of 
its feasible region. The third classification of portfolio selection 
problems deals with Nonlinear Programming (NLP) problems. 
A NLP is one in which the objective or at least one of the 
constraints is a nonlinear function of the decision variables. The 
nonlinear function may be convex or non-convex. In case 
where the objective function and all constraints are convex 

functions a NLP problem can be solved efficiently up to large 
portfolio sizes. However, if the objective function or any 
constraints are non-convex, the problem may have multiple 
feasible regions and multiple locally optimal points within 
these regions. In such case a NLP problem can be quite difficult 
to be solved. Finally, techniques like Fourier Transformation 
and Fibonacci Sequence have been applied to the Portfolio 
Selection problem.  

 

 

 

 

Fig. 2 Mathematical Techniques in Portfolio Management 

C. Stochastic Approaches 

The Stochastic models have been extensively used in modern 
financial risk analysis. Stochastic model is a technique of 
financial modeling in which one or more variables within the 
model are random and are used in order to estimate probability 
distributions of potential outcomes. Brownian motion is a 
well-known example of a continuous stochastic process that 
has been widely used in finance for modeling the random 
fluctuations in a stock’s price. A stochastic process related to 
Brownian motion is the Random walk. In reality Brownian 
motion is the continuous analog to the Random walk. Another 
popular technique in financial modeling is the Markov Chain 
which is a sequence of stochastic events where the current state 
of a variable is independent of all past states, except the current 
state. A number of models assume that stock prices follow a 
Markov process. This assumption is consistent with the weak 
form of market efficiency, which claims that all past prices of a 
stock are reflected in today’s stock price. Thus, Technical 
analysis cannot be used to predict and beat the market. Fuzzy 
logic is among the techniques that have been used extensively 
in financial modeling. Briefly, Fuzzy logic is a type of logic 
that recognizes degrees of truth rather than the well-established 
“true” or “false” Boolean logic. Fuzzy logic has been 
developed in order to represent real world problems that cannot 
be easily represented using the two-valued logic: 1 or 0. From 
this point of view Fuzzy logic seems closer to the way the 
human brain works, which means that by considering all 
available information, takes the best possible decision. Many 
other stochastic methods have been used in financial modeling; 
the table below indicates some of the most well-known 
stochastic methods in financial modeling. 

D. Computational Approaches 

Computer Science not only provided a fast and reliable way 
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of calculating computationally demanding financial models but 
also revolutionized the financial modeling research field itself 
by developing innovative algorithmic approaches for solving 
difficult financial problems that in many cases cannot be solved 
using exact methods. The Computational Approaches dealing 
with financial modeling can be clustered into four different 
groups depending on the applied methodology.  

 

 

 

 

 

Fig. 3 Stochastic Techniques in Portfolio Management 
 

The first one, the so called Evolutionary algorithms (EA) are 
population based stochastic optimization heuristics inspired by 
Darwin’s Evolution Theory. An EA searches through a solution 
space in parallel by evaluating a set (population) of possible 
solutions (individuals). An EA starts with a random initial 
population. Then the ‘fitness’ of each individual is determined 
by evaluating the objective function. After the best individuals 
are selected, new individuals for the next generation are 
created. The new individuals are generated by altering the 
individuals through random mutation and by mixing the 
decision variables of multiple parents through crossover. Then 
the generational cycle repeats until a breaking criterion is 
fulfilled. EAs have been applied successfully to a wide range of 
problems such as engineering, biology, genetics, finance etc. 
Genetic Algorithms (GA) which belong to the family of EAs 
have been proved very effective for solving constrained 
portfolio optimization problems [4], that cannot be solved with 
exact methods. Genetic Programming (GP) belongs to EAs as 
well and its main difference between with the GAs is the 
representation of the solution. GP creates computer programs 
as the solution while GAs create a string of numbers that 
represent the solution. Evolutionary Programming (EP) is a 
stochastic optimization strategy developed by Fogel [11]. EP 
algorithms are similar to GAs, but do not incorporate crossover, 
instead they rely on mutation and the survival of the fittest. 
Evolutionary Strategy (ES) is similar to GAs but use 
recombination to exchange genetic material or information 
between population members instead of crossover, and most of 
the times use a different type of mutation as well. 
Neuroevolution is the use of GA to train artificial neural 
networks. Neuroevolution is used to construct and adapt 
artificial neural networks (ANN) through reinforcement 
learning to decide on optimal portfolio selection strategies.  

The second classification of algorithmic approaches for the 
construction of efficient portfolios concerns the Swarm 
Algorithms. Swarm Intelligence (SI) is inspired from the 

biological examples provided by social insects like ants, bees, 
termites, wasps and by swarming, flocking and herding 
behaviors in vertebrates. Evolution has produced swarming in 
so many different contexts because the synergy and interaction 
of an agent with the group within a swarm provides 
considerable benefits. Swarm Intelligence is a decentralized, 
self-organized system in which the agents through their 
collective behavior find coherent solutions to the arisen 
problems. Ant Colony Optimization (ACO) is an optimization 
procedure inspired by ants’ ability to identify optimal paths by 
depositing pheromone on the ground. Similarly in ACO a 
number of artificial ants identify the optimal path by marking 
solutions as they move on the graph. Another popular swarm 
intelligence technique is the Particle Swarm Optimization 
(PSO). It is an optimization technique that explores a large 
number of candidate solutions in order to find the optimum 
solution. The individual or particle exchanges information with 
the neighboring members, in order to adjust its trajectory 
towards the best attained position. Both ACO and PSO 
techniques have been applied to solve the constrained portfolio 
selection problem [1], [7], [8], [12]. Many others swarm 
algorithm techniques have been devised during the last years, 
some of the most well-known are illustrated in the table below.  

The third classification of computational approaches for the 
solution of the portfolio selection problem concerns the Local 
Search Algorithms techniques. These algorithms try to improve 
an initial solution by applying iteration in order to create the 
neighborhood of the current solution. Then the best solution of 
the neighborhood is selected for the next iteration. The process 
continues until a solution considered optimum is found. 
Simulated Annealing (SA) is a well-known local search 
technique developed to deal with highly nonlinear problems. 
SA is a search method, inspired by the metals’ process of 
annealing, an initial solution is randomly generated, and then 
applying an iteration process a neighbour is found. Suppose we 
are searching for the global maximum all uphill points are 
accepted while some downhill points are accepted as well 
depending on probabilistic criteria. By accepting points that 
reduce the objective, the algorithm avoids being trapped in 
local maxima. SA techniques have been applied extensively for 
the solution of the portfolio selection problem [1], [3], [5], [9], 
[18]. Hill Climbing (HC) is another local search techniques 
applied to the portfolio optimization problem. HC starts with a 
random solution to a problem, then attempts to move to a better 
position by using an evaluation function to assign score to each 
successor. If one of the successors has a better score than the 
current solution then set the new current state to be the 
successor with the best score. The process is repeated until no 
further improvement can be made. Tabu Search (TS) is a 
trajectory based optimization technique. TS provides enhanced 
efficiency of the exploration process by keeping track not only 
of the local information, but also information related to the 
exploration process. Once a candidate solution has been 
identified, it is marked as a tabu solution, thus it is avoided in 
the next iterations and we get rid of the cycling effect. 

Finally the last classification of computational approaches 
for the solution of the portfolio selection problem concerns the 
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Multiobjective Evolutionary Algorithms (MOEAs). 
Multiobjective optimization (MO) is the problem of 
maximizing / minimizing a set of conflicting objectives 
functions subject to a set of constraints. In MO there is not a 
single solution that maximizes / minimizes each objective to its 
fullest. This happens because the various objectives functions 
in the problem are usually in conflict with each other. 
Therefore, the objective in MO is to find the Pareto front of 
efficient solutions that provide a tradeoff between the various 
objectives. MOEAs can be useful in the solution of complex 
problems for which no efficient deterministic algorithm exists 
(i.e. there is no deterministic algorithm that can solve them in 
polynomial time) [21], [22], [25], [26]. In finance there are 
several NP-hard problems for which the use of a heuristic is 
clearly justified [23], [24]. Portfolio Selection belongs to this 
category of problems, because of the simultaneous 
optimization of several conflicting objectives subject to a set of 
constraints imposed to the problem. Over the past years 
researchers developed several approaches for the solution of 
multi-objective optimization problems with the use of EAs. The 
first implementation of a MOEA dates back to the mid-1980s 
[20]. Since then, a considerable amount of research has been 
done in this area, now known as evolutionary multiobjective 
optimization. 
 

 

 

  

 

 

 

Fig. 4 Computational Techniques for the Solution of Portfolio 
Optimization Problem 

III. COMPARATIVE STUDY OF TECHNOLOGIES APPLIED FOR 

EFFICIENT PORTFOLIO CONSTRUCTION 

In the previous pages we covered a considerable number of 
techniques applied for efficient portfolio construction. We saw 
that such diverse fields as finance, mathematics, stochastics and 
computer science have been utilized for finding reliable 
answers to the questions posed by the portfolio selection 
problem complexity. Below we will attempt to provide a 
comprehensive comparative study of the different technologies 
applied for constructing efficient portfolio. The purpose of this 
comparison is to highlights the strengths and weaknesses of the 
various technologies. 

A. Financial Approaches 

The strong point of the financial techniques is that most of 
the times they provide a theoretical framework that interpret the 
empirical results. The framework is usually based on actual 
practices and regulations of the financial markets. To state it 
otherwise for financial people it is not good enough the model 
to provide reliable results but they also need to confirm these 
results from a financial perspective.  

The main criticism of the financial approaches is focused on 
the simplified nature of the various financial models. To put in 
other words the financial theories and models are simplified 
representations of the actual world. However, because of this 
abstraction the financial models loose a significant part of their 
ability to tackle efficiently real world portfolio selection 
problems. A characteristic example is the Mean-Variance 
(MV) model introduced by Markowitz (1952). The MV model 
was criticized for unrealistic assumptions, such as i. No 
transaction costs in buying and selling securities, ii. An investor 
can take any position of any size in any security he wishes, iii. 
Investor does not consider taxes and is indifferent to receiving 
dividends when making investment decisions, iv. Variance 
penalizes any dispersion from the expected return. The MV 
model was far from being the final answer to the problem of 
portfolio selection. However, it was Markowitz’s work that 
triggered the interest of scholars in this particular research field. 

B. Mathematical Approaches 

Financial mathematics provides rigorous formulas for assets 
pricing. In other words mathematical approaches are mainly 
concerned with the determination of the fair value of the 
various financial instruments. That way it becomes possible to 
estimate whether or not an asset is fairly valued or it is 
undervalued or overvalued and correspondently respond the 
potential investor. Mathematical approaches are characterized 
by their deterministic nature. To put it in other words 
randomness is not included in the model construction.  

The criticism about the mathematical approaches is focused 
mainly in the abstract structure of these models. In other words 
most of the times the mathematical models are simplified 
approaches of the real world. This is happening because if we 
apply in the portfolio selection problem some real world 
constraints and multiple objectives the problem become so 
complicate that in many cases cannot be solved with exact 
methods. Another criticism of the mathematical techniques is 
that they do not provide adequate theoretical reasoning of the 
derived results. 

C. Stochastic Approaches 

The Stochastic approaches disciplinary belong to the study 
of Financial Mathematics, however are distinguished from the 
mathematical approaches because in the model construction 
take into consideration the randomness. Stochastic models are 
used extensively in financial markets for assets pricing. The 
main advantage of stochastic techniques is that they allow us to 
incorporate into the portfolio selection models some real world 
parameters and to obtain estimates of the potential outcomes.  

The main limitation of the stochastic approaches has been 
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identified to be the complexity associated with this kind of 
problems. The complexity varies according to the formulation 
of each individual stochastic model. Thus, different 
formulations of the stochastic models lead to considerably 
different complexities. However the constant improvement of 
the new generations of computers guarantees that this problem 
will be of less concern with the pass of time. Another weakness 
of the stochastic approaches is that they provide multiple 
solutions. However, it is the nature of the stochastic processes 
that allows the answer to vary from run to run within a range 
determined by the convergence criteria. Finally, as another 
issue of concern with stochastic processes, has been identified 
the convergence level. The convergence level of the solution 
must be quite high to achieve an accurate solution but no so 
high as to increase the processing time significantly. 

D. Computational Approaches 

Computational technologies applied to the portfolio 
selection problem have become increasingly popular relatively 
recently [15], [16]. Not only because they provide a fast and 
reliable way of calculating computationally demanding 
financial models but also why revolutionized the financial 
modeling research field itself by developing innovative 
algorithmic approaches for solving difficult financial problems 
that in many cases cannot be solved with exact methods. A 
considerable number of computational techniques have been 
devised and applied successfully for constructing efficient 
portfolios. Computational techniques are better able to address 
the shortcomings of other approaches like for instance and 
financial and mathematic approaches. This is because 
computational technologies like the Evolutionary Algorithms 
(EAs) can deal simultaneously with a set of possible solutions 
(population) which allows finding several members of the 
Pareto optimal set in a single run of the algorithm, instead of 
having to perform a series of separate runs as in the case of the 
traditional mathematical programming techniques. Moreover, 
EAs are less susceptible to the shape or continuity of the Pareto 
front (they can easily deal with discontinuous and concave 
Pareto fronts), whereas these two issues are known problems 
with mathematical programming techniques. MOEAs can be 
particularly useful in the solution of complex portfolio 
selection problems for which no efficient deterministic 
algorithm exists [14], [17], [27]. An issue that is related to some 
computational approaches is the computational time required 
for finding the solution; however new generations of computers 
and more efficient algorithms guarantee that this problem will 
be of less concern in the years to come.  

IV. CONCLUSIONS  

The purpose of this paper is to provide an insight into the 
current state of research in the technologies and algorithms 
applied for constructing efficient portfolios. For that purpose, 
we classify the various technologies and algorithms applied for 
the solution of the portfolio selection problem according to the 
discipline and the methodological framework followed. We 
provide a concise presentation of the emerged categories and 
we are trying to identify which methods considered obsolete 

and which lie at the heart of the debate. In particular, we notice 
a shift of the research interest from the financial approaches 
towards more numerate techniques such as financial 
mathematics and stochastic approaches. The last decade 
computational approaches gained popularity as the result of 
their ability to solve complicate portfolio selection problems 
that cannot be solved with exact methods. The incorporation in 
the portfolio selection models of some real world constraints 
and multiple objectives made them difficult to be solved with 
exact methods. Computational approaches such as 
Evolutionary Algorithms in general and MOEAs in particular, 
can be useful in the solution of complex problems for which no 
efficient deterministic algorithm exists. Portfolio Selection 
belongs to this category of problems, because of the 
simultaneous optimization of several conflicting objectives 
subject to a set of constraints imposed to the problem.  
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