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Effect of Load Ratio on Probability Distribution of
Fatigue Crack Propagation Life in Magnesium Alloys
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Abstract—It is necessary to predict a fatigue crack propagation
life for estimation of structural integrity. Because of an uncertainty
and a randomness of a structural behavior, it is also required to
analyze stochastic characteristics of the fatigue crack propagation life
at a specified fatigue crack size.

The essential purpose of this study is to find the effect of load ratio
on probability distribution of the fatigue crack propagation life at a
specified grown crack size and to confirm the good probability
distribution in magnesium alloys under various fatigue load ratio
conditions. To investigate a stochastic crack growth behavior, fatigue
crack propagation experiments are performed in laboratory air under
several conditions of fatigue load ratio using AZ31.

By Anderson-Darling test, a goodness-of-fit test for probability
distribution of the fatigue crack propagation life is performed. The
effect of load ratio on variability of fatigue crack propagation life is
also investigated.
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. INTRODUCTION

AGNESIUM alloy is the attractive structural material in

an automobile industry, an aerospace industry and an
electronic industry due to its excellent property such as
specific strength, machinability, and vibrational absorption
and environmental requirement for reduction in air pollution.
As the wrought magnesium alloy is better than the cast one,
the former has more attention than the latter. Therefore it is of
primary importance to investigate the fatigue crack
propagation (FCP) behavior of a wrought magnesium alloy as
structural material.

There are many studies on FCP behavior of magnesium
alloy [1]-[4]. However the study for stochastic FCP
characteristic of a wrought magnesium alloy has been rarely
reported [5]-[7].

The stochastic fatigue crack propagation behaviors are
investigated through the experiments and the statistical
analyses to find the effect of load ratio on probability
distribution of the FCP life at a specified grown crack size.

I1.EXPERIMENTAL METHODS

A. Material and Specimen

The material used for this study is a commercial wrought
AZ31 magnesium alloy. Its chemical composition is shown in
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Table | and the mechanical properties determined by tensile
test are listed in Table I1.

The specimen is CT (Compact Tension) type with a width
of 50mm complied with ASTM E647 [8]. CT specimens with
a thickness of 6.60mm are prepared for four cases of load
ratio, respectively.

TABLE |
CHEMICAL COMPOSITION OF MAGNESIUM ALLOY (WT, %)
Al Zn Si Mn Cu Fe Mg
3.29 0.95 0.04 031 0003 001 Bal
TABLE II

MECHANICAL PROPERTIES OF MAGNESIUM ALLOY
Tensile strength (MPa)  Yield strength (MPa)  Elongation (%)
264.4 198.3 21.95

B. Fatigue Crack Propagation Experiment

The FCP experiments have been carried out on CT
specimens of 20 duplicates for each load ratio prepared
according to ASTM E647. The load ratio conditions are four
cases of 0.05, 0.10, 0.20, 0.30. The details of the fatigue
experiment conditions are as Table IlI.

The CT specimens are subjected to fatigue experiments
using servo-hydraulic axial testing machine. After measuring
the crack opening length on the loading line, the grown crack
size is computed by the compliance technique.

TABLE 111
FATIGUE EXPERIMENT CONDITIONS
Test condition Value
Load ratio 0.05, 0.10, 0.20, 0.30
Specimen thickness 6.60mm
Maximum fatigue load 2.00 kN
Frequency 10 Hz
Wave form Sine

I1l.  STATISTICAL ANALYSIS

The statistical analysis for the probability density and the
probability distribution of the FCP life is performed in order to
find the effect of the load ratio on the probability distribution
of the FCP life at a specified grown crack size. The statistical
package software of MINITAB 15 is used to analyze the
statistical aspects.

Anderson-Darling (A-D) test has been adopted in the
statistical analysis of this study to estimate the probability
distribution of the FCP life under various load ratio
conditions. A-D test statistics, A2, is obtained from (1).
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where, i is a rank of observation, n is a number of
observation and F () is a cumulative distribution function. The

criteria for the goodness-of-fit of probability distribution is to
compare A-D statistics, A?, computed to critical value of A?
according to the conditions such as a number of observation
and a significant level. The critical value of A?is 0.744 in case
of 20 observations and 5% significant level [9], [10].

IV. RESULTS AND DISCUSSIONS

A. Statistical Characteristics

The probability density of the FCP life for each load
ratio(R) conditions is shown in Fig. 1, depending on the
specified grown crack size.

In Fig. 1 (a), the dispersion of the FCP life at a crack size of
20mm is very small. On the contrary, it becomes large as the
crack grows. This tendency is similar in other load ratios in
Figs. 1 (b)-(d) and 2. Especially, the dispersion of the FCP life
becomes large in the larger load ratio.

The prediction of a fatigue life is not easy because the
dispersion of the FCP life becomes large as the load ratio is
large. It is found that the statistical aspect of the FCP life in
magnesium alloy is affected by the load ratio condition.

Therefore, the probabilistic approach is required to predict a
safe fatigue life taking account of the load ratio.
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(b) R=0.10

Fig. 1 Probability density of fatigue crack propagation life depending
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Fig. 3 Probability distribution of FCP life at a specified crack size (3-
parameter Weibull distribution)

V.CONCLUSION

The conclusions obtained can be summarized as follows:

1) It is found that the statistical aspect of the FCP life in
magnesium alloy is affected by the load ratio condition.

2) The probabilistic approach is required to predict a safe
fatigue life taking account of the load ratio.

3) Itis reconfirmed that the 3-parameter Weibull distribution
is useful for the prediction of the FCP life at a specified
crack size in probabilistic approach.
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