Steady State and Accelerated Decay Rate Evaluations of Membrane Electrode Assembly of PEM Fuel Cells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
Steady State and Accelerated Decay Rate Evaluations of Membrane Electrode Assembly of PEM Fuel Cells

Authors: Yingjeng James Li, Lung-Yu Sung, Andrew S. Lin, Huan-Jyun Ciou

Abstract:

Durability of Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cells was evaluated in both steady state and accelerated decay modes. Steady state mode was carried out at constant current of 800mA/cm2 for 2500 hours using air as cathode feed and pure hydrogen as anode feed. The degradation of the cell voltage was 0.015V after such 2500 hrs operation. The degradation rate was therefore calculated to be 6uV/hr. Continuously Vigorous fluctuation of the cell voltage, which was switched between OCV and 0.2V, was employed for the accelerated decay mode. No obvious change in performance of the MEA was observed after 10000 cycles of such operation.

Keywords: Durability, lifetime, membrane electrode assembly, proton exchange membrane fuel cells.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1107521

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2119

References:


[1] E. Antolini, J. Appl. Electrochem. 34 (2004) 563–576.
[2] M. Conte, A. Iacobazzi, M. Ronchetti, R. Vellone, J. Power Sources 100 (2001) 171–187.
[3] F. Jing, M. Hou, W. Shi, J. Fu, H. Yu, P. Ming, B. Yi, J. Power Sources 166 (2007) 172–176.
[4] S. Litster, G. McLean, J. Power Sources 130 (2004) 61–76.
[5] S. Maass, F. Finsterwalder, G. Frank, R. Hartmann, C. Merten, J. Power Sources, 176 (2008) 444–451.
[6] Mehta, J.S. Cooper, J. Power Sources 114 (2003) 32–53.
[7] K. Scott, A.K. Shukla, Rev. Environ. Sci. Bio/Technology 3 (2004) 273–280.
[8] D.P. Wilkinson, J. St-Pierre, in Handbook of Fuel Cells, vol. 3, John Wiley & Sons Ltd., 2003, pp.611-626.
[9] O. Yamazaki, M. Echigo, T. Tabata, Abstracts from Fuel Cell Seminar, 2002, Palm Springs, CA, November, 2002, pp. 105–108.
[10] M. Hicks, D. Ylitalo, Abstracts from Fuel Cell Seminar 2003, Miami Beach, FL, November, 2003, pp. 97–99.
[11] S.J.C. Cleghorn, J.A. Kolde, Abstract from Fuel Cell Seminar 2003, Miami Beach, FL, November 2003, pp. 832–835.
[12] M. Takahashi, N. Kusunose, M. Aoki, A. Seya, Abstracts from Fuel Cell Seminar 2002, Palm Springs, CA, November 2002, pp. 74–77.
[13] S.D. Knight, K.M. Colbow, J. St-Pierre, D. Wilkinson, J. Power Sources 127 (2004) 127–134.
[14] C. Iojoiu, E. Guilminot, F. Maillard, M. Chatenet, J.-Y. Sanchez, E. Claude, E. Rossinot, J. Electrochem. Soc. 154 (2007) B1115–B1120.
[15] C. Chen, G. Levitin, D.W. Hess, T.F. Fuller, J. Power Sources 169 (2007) 288–295.
[16] E. Guilminot, A. Corcella, M. Chatenet, F. Maillard, F. Charlot, G. Berthome, C. Iojoiu, J.-Y. Sanchez, E. Rossinot, E. Claude, J. Electrochem. Soc. 154 (2007) B1106–B1114.
[17] J. Healy, C.Hayden, T. Xie, K. Olson, R.Waldo, M. Brundage, H. Gasteiger, J.Abbott, Fuel Cells 5 (2005) 302–308.
[18] T. Kinumoto, M. Inaba, Y. Nakayama, K. Ogata, R. Umebayashi, A. Tasaka, Y. Iriyama, T. Abe, Z. Ogumi, J. Power Sources 158 (2006) 1222–1228.
[19] S. Kundu,M.W. Fowler, L.C. Simon, S. Grot, J. Power Sources 157 (2006) 650–656.
[20] S. Kundu, L.C. Simon, M.W. Fowler, Polym. Degrad. Stab. 93 (2008) 214–224.
[21] H. Tang, S. Peikang, S.P. Jiang, F. Wang, M. Pan, J. Power Sources 170 (2007) 85–92.
[22] V.A. Sethuraman, J.W. Weidner, A.T. Haug, L.V. Protsailob, J. Electrochem. Soc. 155 (2008) B119–B124.
[23] J. St-Pierre, N. Jia, J. New Mater. Electrochem. Syst. 5 (2002) 263–271.
[24] S.J.C. Cleghorn ∗, D.K. Mayfield D.A. Moore, J.C. Moore, G. Rusch, T.W. Sherman, N.T. Sisofo, U. Beuscher, Journal of Power Sources 158 (2006) 446–454.