3D Objects Indexing with a Direct and Analytical Method for Calculating the Spherical Harmonics Coefficients

S. Hellam, Y. Oulahrir, F. El Mounchid, A. Sadiq, S. Mbarki

Abstract—In this paper, we propose a new method for three-dimensional object indexing based on D.A.M.C-S.H.C descriptor (Direct and Analytical Method for Calculating the Spherical Harmonics Coefficients). For this end, we propose a direct calculation of the coefficients of spherical harmonics with perfect precision. The aims of the method are to minimize, the processing time on the 3D objects database and the searching time of similar objects to a request object.

Firstly we start by defining the new descriptor using a new division of 3-D object in a sphere. Then we define a new distance which will be tested and prove his efficiency in the search for similar objects in the database in which we have objects with very various and important size.

Keywords—3D Object indexing, 3D shape descriptor, spherical harmonic, 3D Object similarity.

I. INTRODUCTION

With technological developments, three-dimensional objects conquered the majority of industries, include: video games, automotive industry, modeling and the development of 3D scanners, the architecture and bio-medical.

The rapid increase in this domain has asked to establish new tools to research and navigate in large 3D databases.

The goal of the 3D indexing is to describe compactly a 3D object shape. To do this, shape descriptors are used to obtain vectors features or 3D objects signatures that serve as a key in objects retrieval.

The spherical harmonic basis is like the Fourier basis but defined on the surface of a sphere, it’s a very important tool to evaluate convolutions in one or two dimensional spaces. Many searches on computer graphics [1]-[5] have already using spherical harmonics, but this base have just recently become feasible to be used in real time computer graphics.

In this article (is the continuity of our work [6]), we will develop a new Method of Calculation of the Spherical Harmonics Coefficients with Direct and Analytical procedure named D.A.M.C-S.H.C.

For similarity between 3D objects, we then a new distance based on spherical harmonic coefficients. Finally, we have tested this distance on 3D objects for a medium and high density.

This paper is organized in the following way: Section II gives a brief survey of previous work. Next the proposed method for determination of Spherical Harmonics Coefficients is explained. The following section presents practical examples. Finally the conclusions point out the limitations and some perspectives.

II. STATE OF ART

In order to solve the problem of data treatment: storing, editing and manipulating, very powerful programs were developed for importing the data files and exporting them in well-standardized formats, like IGES, DXF for CAD applications and VRML for [7].

To evaluate the efficiency of the descriptor, the properties of invariance are required to eliminate differences due to translation, rotation and variation of scale.

The properties of invariance are required to eliminate differences due to rotation, translation and magnification. To avoid of these dependencies, we shall normalize the models by using the center of mass for translation, the root of the average square radius for scale and principal axis for rotation [8], [9].

The literature provides a lot of various 3D shape descriptors, describing geometric as well as topological properties of 3D shapes grouped in four classes:

- Global shape descriptors [4], [5] and [8]-[14];
- Local descriptors [15];
- Graph based methods [10], [16] and [17];
- Geometric methods based on 2D views of 3D models [18], [19].

The team of Leipzig has also proposed to apply a Fourier transform on the sphere S₂ [20] by applying the proposed spherical harmonic.

Then, to overcome the problem of invariance to rotation, the Princeton team proposed to apply the spherical harmonic decomposition of spherical functions defined by the intersection of the surface of the 3D object with a set of concentric spheres [11].

The spherical harmonics method of Princeton’s team [11] gave better results in their database than their previous descriptor (distribution of 2D form). However, it is based on a 3D model voxelization, therefore depends on the level of resolution of the voxelization, and resulting in a loss of detail in the description of the object.

That is why [20] proposing to apply the method directly on
3D meshes with new spherical functions. The results they obtained on their database with their method are less time consuming.

However, results of [21] also show that the encoded information does not really make specific requests on shapes, the main limitation is the number of concentric spheres and the number of coefficients harmonics remaining may be too low. The authors choose in practice 32 concentric spheres and 16 harmonics per sphere. Thus, their descriptor has \(32 \times 16 = 512\) coefficients.

Different 3D shape description methods have been proposed in this research area. Teams [22] have realized a comparative study of 3D retrieval algorithms [11], [23]. Those algorithms can be clustered into two main families: 2D/3D approaches and 3D/3D approaches. The descriptor using 2D/3D approaches, the description model is obtained through different 2D projections of the 3D shape, whereas for the descriptor using 3D/3D approaches, the description model is obtained from the 3D information directly extracted from the 3D shape [24].

Peijiang Liu et al. [25] have represented 3D face models in a canonical representation, namely Spherical Depth Map (SDM). Then, considering the predictive contribution of each SHF feature, especially in the presence of facial expression and occlusion, feature selection methods are used to improve the predictive performance and provide faster and more cost-effective predictors.

III. SPHERICAL HARMONIC METHOD

A. Invariant 3D Shape Descriptors

It is designed to normalize the different objects in a coordinate in order to ensure unique representation. The properties of invariance are required to eliminate differences due to rotation, translation and the variation of scale. To avoid these dependencies, we shall normalize the models by using the center of mass for translation, the root of the average square radius for scale and principal axis for rotation [8], [14] and [26].

B. Representation of Spherical Harmonics

The gradient in spherical coordinates is [27]:

\[

\nabla = \frac{\partial}{\partial \theta} r \cos \phi e_r + \frac{1}{r} \frac{\partial}{\partial \theta} \cos \theta e_\theta + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} e_\phi
\]

The Laplacian of a function \(f\):

\[

\nabla^2 f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \phi^2}
\]

\[

Y_l^m (\theta, \phi) = \frac{\sqrt{2l + 1} \sqrt{\pi} (l + m)!}{\sqrt{4\pi (l - m)!}} P_l^m (\cos \theta) e^{im \phi}
\]

\(P_l^m\) is the Legendre polynomial associated of \(l\) degree and \(m\) order, \(\theta\) varies between \([0, \pi]\) and \(\phi\) varies between \([0, 2\pi]\) [27].

\[

P_l^m (x) = \frac{(-1)^m}{2^l l!} \frac{d^{l+m}}{dx^{l+m}} (x^2 - 1)^l
\]

Spherical harmonic decomposition:

\[

\{Y_l^m / m \in \mathbb{Z} \text{ and } l \in \mathbb{N}\}
\]

Orthonormal basis in the Hilbert space \(L^2 (S^2)\) with \(S^2\) unit sphere [24].

\[

\int_0^{2\pi} \int_0^\pi Y_l^m (\theta, \phi) \bar{Y}_l^{m'} (\theta, \phi) \sin \theta \, d\theta \, d\phi = \delta_{ll'} \delta_{mm'}
\]

\(\delta_{ij}\) is Symbol of Kronecker, where:

\[

\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}
\]

We have:

\[

- \Delta Y_l^m (\theta, \phi) = (l(l+1)) Y_l^m (\theta, \phi)
\]

and:

\[

-i \frac{\partial}{\partial \phi} Y_l^m = m Y_l^m
\]

The graphical representation:

![Fig. 1 Representation of the real parts of spherical harmonics for \(l = 2\) and \(-1 \leq m \leq 1\). The black color represents positive values and the gray color represents negative values](image)

Representative surfaces are bumpy spheres: bumps correspond to the parts where \(Y_l^m (\theta, \phi)\) positive, dips are corresponding to the parts where \(Y_l^m (\theta, \phi)\) is negative, \(\theta\) and \(\phi\) describe the interval \([0, \pi]\) and \([0, 2\pi]\). The parameters \(l\) and \(m\) are defined by [27]:

- \(m\) : circles along the meridian, an iso-longitude.
- \(l - m\) : circles in a parallel, an iso-latitude.

Spherical harmonic decomposition (S.H.D): Let \(f(\theta, \phi)\) be a harmonic function defined on the closed interval \([-1, 1]\) [24].

\[

f(\theta, \phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} C_{lm} Y_l^m (\theta, \phi)
\]
$C_{l,m}$ are the harmonic coefficients of order (l,m).

Hermitian scalar product:

$$\langle f, g \rangle = \frac{1}{4\pi} \int_{S^2} f^* g \sin(\theta) \, d\theta \, d\phi$$

(10)

where f^* is the complex conjugate of f indeed [27]:

$$C_{l,m} = \langle f, \phi \rangle = (-1)^m \frac{2l+1}{4\pi(l+m)!} \int_{S^2} f^* (\cos(\theta))^{l-m} \sin(\theta) \, d\theta \, d\phi$$

(11)

We have:

$$C_{l,-m} = (-1)^m C_{l,m}^*$$

(12)

$C_{l,m}^*$ is the complex conjugate of $C_{l,m}$.

From (12), it is sufficient to calculate the coefficients $C_{l,m}$ for m positive, so that reduced half of the computation time.

The dimension of the $L^2(S^1)$ space is 12: is the set of points which create the 3D object. The indicator function:

$$\chi(r, \theta, \phi) = \begin{cases} 1 & \text{if } M \in \xi_s \\ 0 & \text{if } M \notin \xi_s \end{cases}$$

(13)

where ξ_s is the set of points belonging to the object and the sphere (S^2) with radius r. Thus: $\xi_s = \xi \cap (S^2)$

C. Mathematical Development of D.A.M.C-S.H.C Descriptor

We calculate the coefficients of the spherical harmonics for different cases of m:

- $m = 0$
- $0 < m < l$
- $m = l$

There are three possible cases for the existence of points M regarding to ξ_s:

$$d = r_i - r$$

(14)

$$\begin{cases} d > 0 & \text{or } d < 0 \Rightarrow M \in \xi_s \\ d = 0 \Rightarrow M \notin \xi_s \end{cases}$$

(15)

We consider an infinitely small area A_k defined by a spherical square offside 2ε, on the sphere S^2 of radius r and center M_k. This area is represented in Fig. 2.

$$\varphi_k = \arctan\left(\frac{Y_k}{X_k}\right)$$

(16)

We choose ε infinitely small where $0 \leq \theta \leq \pi$ and $0 \leq \varphi \leq 2\pi$:

$$C_{l,m} = (-1)^m \frac{2l+1}{4\pi(l+m)!} \int_{S^2} (\cos(\theta))^m \sin(\theta) \, d\theta$$

(18)

with

$$I_{\varphi_k,\varepsilon} = \int_{\varphi_k}^{\varphi_k+\varepsilon} e^{-im\phi} \, d\phi$$

(20)

and

$$I_{\theta_k,\varepsilon} = \int_{\theta_k}^{\theta_k+\varepsilon} P_l^m(\cos(\theta)) \sin(\theta) \, d\theta$$

(21)

Case: $m = 0$

Using a variable change: $t = \cos \theta$, after integration $I_{\theta_k,\varepsilon}$ is written like a formula [28]:

$$I_{\theta_k,\varepsilon} = \int_{\theta_k}^{\theta_k+\varepsilon} P_l^m(\cos(\theta)) \frac{\cos(\theta+k+\varepsilon)}{\cos(\theta+k-\varepsilon)}$$

(22)
Finally, we find a coefficient of spherical harmonic decomposition (S.H.D) expressed by:

\[
C_{lm} = -e^{-i\omega \theta} \sqrt{\frac{2l + 1}{\pi} \frac{(l-m)!}{(l+m)!}} \left[P_l(m, \cos(\theta_2 + \phi) + P_l(m, \cos(\theta_2 - \phi)) \right]
\]

Where:

\[
P_l(m, \cos(\theta)) = \frac{d^n P_l(\cos(\theta))}{d \cos^n(\theta)}
\]

Case: \(1 \leq m \leq l-1\)

From where (20):

\[
I_{0,0} = \frac{2e^{-i\omega \theta}}{m} \sin(m \varepsilon)
\]

The calculation of \(I_{0,x}\) (21) and according to the formula [29]:

\[
P_l^n(\cos(\theta)) = (-1)^n \sin^n(\theta) \frac{d^n P_l(\cos(\theta))}{d \cos^n(\theta)}
\]

we set \(D = \frac{d}{d\varepsilon}\) and we have [30]

\[
D^n P_l(z) = (-1)^n (l+m)! \frac{d^n P_l(\cos(\theta))}{d \cos^n(\theta)}
\]

And \(a_j\): Pochhammer symbol [32].

\[
(a_j) = a(a+1)(a+2).....(a+j-1)\frac{\Gamma(a+j)}{\Gamma(a)}
\]

This series converges for \(|z| < 1\) [33].

\[
I_{0,x} = \frac{2(l+m)!}{(l-m)!m!} \int_0^{\frac{\varepsilon}{2}} (\sin(\theta))^{n-1} F(m-l+1+l+1\mu=1)m! \frac{\cos(\theta)}{2} d\theta
\]

With a change of variable \(t = \sin \left(\frac{\varepsilon}{2} \right)\) the expression of \(I_{0,x}\) becomes:

\[
I_{0,x} = \frac{2(l+m)!}{(l-m)!m!} \int_0^{\frac{\varepsilon}{2}} (t(1-t))^{\frac{\mu}{2}} F(m-l+1+l+1\mu=1)m! d\theta
\]

By using the relationship of chasles:

\[
I_{0,x} = \frac{2(l+m)!}{(l-m)!m!} \int_0^{\frac{\varepsilon}{2}} (t(1-t))^{\frac{\mu}{2}} F(m-l+1+l+1\mu=1)m! d\theta - \int_0^{\frac{\varepsilon}{2}} (t(1-t))^{\frac{\mu}{2}} F(m-l+1+l+1\mu=1)m! d\theta
\]

\[
\Gamma(z+1) = 2\Gamma(z)
\]

\[
\Gamma \left(\frac{1}{2} \right) = \sqrt{\pi}
\]

\[
\Gamma \left(n + \frac{1}{2} \right) = \frac{n!}{2n}
\]

where

\[
\text{if } n \text{ is odd and } n! = 1.3.5........(n-2)n\text{ if } n \text{ is even}
\]

\[
\text{if } n = -1 \text{ or } n = 0
\]

The derivative n order of the hypergeometric function \(F(a, b; c; z)\) can be expressed by [30], [33]:

\[
d^n F(a,b,c;z) = \frac{(a)_j}{(c)_j} F(a+n,b+n,c+n,Z)
\]
We put and define J by:

$$J = \int_0^\infty \frac{\sin \theta}{\sin \phi} \frac{d\phi}{\sqrt{\sin \theta}}$$

The development of $F(m-l, m+1; m+1; t)$ series gives:

$$J = \int_0^\infty \frac{\sin \theta}{\sin \phi} \frac{d\phi}{\sqrt{\sin \theta}} \frac{\Gamma(m) \Gamma(m+l) \Gamma(m+1)}{\Gamma(m+l+1)}$$

$$J = \sum_{j=0}^{m-1} \frac{(m-l)j(m+l+1)}{(m+l)j!}$$

$$J = \sum_{j=0}^{m-1} \frac{(m-l)(m+l+1)}{(m+l)j!}$$

with:

$$J = \sum_{j=0}^{m-1} \frac{(m-l)(m+l+1)}{(m+l)j!} B_1(m, j)$$

and:

$$p > 0, q > 0 \text{ and } 0 < x < 1$$

$B_1(p, q)$ is the Beta incomplete function [30], [34].

$$B_1(p, q) = \frac{x^p}{p} \sum_{j=0}^{\infty} \frac{(-1)^j (2j)!}{2^j j!} \frac{\Gamma(p+q)}{\Gamma(p+q-j)}$$

$$B_1(p, q) = \frac{x^p}{p} \sum_{j=0}^{\infty} \frac{(-1)^j (2j)!}{2^j j!} \frac{\Gamma(p+q)}{\Gamma(p+q-j)}$$

$$B_1(p, q) = \frac{x^p}{p} \sum_{j=0}^{\infty} \frac{(-1)^j (2j)!}{2^j j!} \frac{\Gamma(p+q)}{\Gamma(p+q-j)}$$

For $x = 1$ we have:

$$B_1(p, q) = \frac{x^p}{p} \sum_{j=0}^{\infty} \frac{(-1)^j (2j)!}{2^j j!} \frac{\Gamma(p+q)}{\Gamma(p+q-j)}$$

$$B_1(p, q) = \frac{x^p}{p} \sum_{j=0}^{\infty} \frac{(-1)^j (2j)!}{2^j j!} \frac{\Gamma(p+q)}{\Gamma(p+q-j)}$$

$$B_1(p, q) = \frac{x^p}{p} \sum_{j=0}^{\infty} \frac{(-1)^j (2j)!}{2^j j!} \frac{\Gamma(p+q)}{\Gamma(p+q-j)}$$

According to (39) and (47), $I_{\theta,k \varepsilon}$ can be written in:

$$I_{\theta,k \varepsilon} = \frac{2l+m}{(l-m)\pi t}$$

From where coefficients $C_{l,m}^{\varepsilon, \theta}$ were calculated for $1 \leq m \leq l-1$ we have:

$$C_{l,m}^{\varepsilon, \theta} = \frac{2l+l}{(l-m)\pi t}$$

$$C_{l,m}^{\varepsilon, \theta} = \frac{2l+l}{(l-m)\pi t}$$

$$C_{l,m}^{\varepsilon, \theta} = \frac{2l+l}{(l-m)\pi t}$$

Case $m = l$

We have:

$$I_{\theta,k \varepsilon} = \frac{(-1)^l (2l)!}{2^l l!} \int \frac{\sin \theta}{\sin \phi} \frac{d\phi}{\sqrt{\sin \theta}}$$

We obtain:

$$I_{\theta,k \varepsilon} = \frac{(-1)^l (2l)!}{2^l l!} \int \frac{\sin \theta}{\sin \phi} \frac{d\phi}{\sqrt{\sin \theta}}$$

From where:

$$I_{\theta,k \varepsilon} = \frac{(-1)^l (2l)!}{2^l l!} \int \frac{\sin \theta}{\sin \phi} \frac{d\phi}{\sqrt{\sin \theta}}$$

and

$$C_{l,m}^{\varepsilon, \theta} = \frac{\pi}{2}\frac{2l+1}{(l+2)!} \sin(\theta \varepsilon)$$

$$C_{l,m}^{\varepsilon, \theta} = \frac{\pi}{2}\frac{2l+1}{(l+2)!} \sin(\theta \varepsilon)$$

The coefficients of S.H.D $C_{l,m}^{\varepsilon, \theta}$ are given with:
where: \(0 \leq k \leq N\) and \(N\) is the number of points form the 3D object.

\[
N = \text{card}(\xi)
\]

\[
H = \begin{bmatrix}
C_{1}^{1} & \cdots & C_{1}^{l} & \cdots & C_{1}^{j} & \cdots & C_{1}^{l} & \cdots & C_{1}^{j} \\
\vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
C_{l}^{1} & \cdots & C_{l}^{l} & \cdots & C_{l}^{j} & \cdots & C_{l}^{l} & \cdots & C_{l}^{j} \\
\end{bmatrix}
\]

This matrix is represented by a \(2l+1\) rows and \(N\) columns, where \(N\) is the number of points which represent the 3D object.

Each row \(R_k\) characterize the point \(P_k\) by the \(2l+1\) coefficients of spherical harmonic \(C_{l,m}^k\), where \(1 \leq k \leq N\) and \(-l \leq m \leq l\).

In each column \(C_m\) we calculate the different coefficients \(C_{l,m}^k\) for all points defining the object.

D. Measurement of Similarity Based on New Distance Using Spherical Harmonic Coefficients.

We define for same value \(l\) the coefficient \(F_i:\)

\[
F_i = \left(\sum_{l=1}^{N_i} \frac{\sum_{m=-l}^{l} |C_{l,m}^i|}{(2l+1) \times N_i}\right)^{1/N_i}
\]

where \(N_i\) is the number of points in \(O_i\) object. \(F_i\) represents the arithmetic average of all the spherical harmonic coefficients of the matrix \(H\).

\[
D = |F_i - F_j|
\]

where \(i\) and \(j\) indicate the objects \(F_i\) and \(F_j\) respectively.

Special case: For \(N \to +\infty\) ; we have:

\[
\lim_{N \to +\infty} \left(\frac{1}{N}\right)^{1/N} = 1
\]

Thus:

\[
\lim_{N \to +\infty} F_i = F_i
\]

For two objects \(O_1\) and \(O_2\), where \(N_2 \to +\infty\)

So we can say that the object \(O_2\) is transparent with respect to the object \(O_1\).

IV. EXPERIMENTS AND RESULTS

Experience 1

For testing the new distance of similarity indicated in (15) for 3D objects, we have chosen two classes of objects: class-1, and class-2 as we show in Figs. 3 and 4.
Table I shows a sample of the values of the \(D\) distance calculated between Dragon DR41 and other Objects from the class-1 for values of \(l\) between 1 and 35. Table IV shows a sample of the values of the \(D\) distance calculated between Dragon DR41 and other Objects from the class-2 for values of \(l\) between 1 and 35.

Table I

<table>
<thead>
<tr>
<th>Object</th>
<th>AD1</th>
<th>AD6</th>
<th>AD7</th>
<th>DR1</th>
<th>DR3</th>
<th>DR5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>17387</td>
<td>8058</td>
<td>19318</td>
<td>6930</td>
<td>13248</td>
<td>56420</td>
</tr>
</tbody>
</table>

In order to test the distance of similarity chosen, we compare an object to the other objects in the same class.

Table III

<table>
<thead>
<tr>
<th>Value</th>
<th>AD6-AD1</th>
<th>AD6-AD7</th>
<th>AD6-DR1</th>
<th>AD6-DR3</th>
<th>AD6-DR5</th>
<th>AD6-DR7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.362476210274E-007</td>
<td>3.52038360531E-007</td>
<td>3.98987458326E-007</td>
<td>4.40639748595E-007</td>
<td>4.80788479462E-007</td>
<td>5.20932924057E-007</td>
</tr>
<tr>
<td>2</td>
<td>3.73978621054E-007</td>
<td>4.09636045236E-007</td>
<td>4.77069870453E-007</td>
<td>5.47658970454E-007</td>
<td>6.07324362535E-007</td>
<td>6.67086920457E-007</td>
</tr>
</tbody>
</table>

Table IV

<table>
<thead>
<tr>
<th>Value</th>
<th>DR41-DR49</th>
<th>DR41-DR41</th>
<th>DR41-CH39</th>
<th>DR41-GR34</th>
<th>DR41-WO36</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.09632986569E-007</td>
<td>2.73956336435E-007</td>
<td>3.44762845333E-007</td>
<td>4.15543628586E-007</td>
<td>4.73768576987E-007</td>
</tr>
<tr>
<td>2</td>
<td>2.73595633643E-007</td>
<td>3.44762845333E-007</td>
<td>4.15543628586E-007</td>
<td>4.73768576987E-007</td>
<td>4.73768576987E-007</td>
</tr>
</tbody>
</table>

Table V

<table>
<thead>
<tr>
<th>Value</th>
<th>DR41-DR41</th>
<th>DR41-CH39</th>
<th>DR41-GR34</th>
<th>DR41-WO36</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.73595633643E-007</td>
<td>3.44762845333E-007</td>
<td>4.15543628586E-007</td>
<td>4.73768576987E-007</td>
</tr>
<tr>
<td>2</td>
<td>2.73595633643E-007</td>
<td>3.44762845333E-007</td>
<td>4.15543628586E-007</td>
<td>4.73768576987E-007</td>
</tr>
</tbody>
</table>

Table VI

<table>
<thead>
<tr>
<th>Value</th>
<th>DR41-DR41</th>
<th>DR41-CH39</th>
<th>DR41-GR34</th>
<th>DR41-WO36</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.73595633643E-007</td>
<td>3.44762845333E-007</td>
<td>4.15543628586E-007</td>
<td>4.73768576987E-007</td>
</tr>
<tr>
<td>2</td>
<td>2.73595633643E-007</td>
<td>3.44762845333E-007</td>
<td>4.15543628586E-007</td>
<td>4.73768576987E-007</td>
</tr>
</tbody>
</table>
For testing the similarity distance, we draw the graph of a function \(D \) depending on the parameter \(l \) and \(\epsilon = 10^{-11} \).

Fig. 5 Measurement of similarity between Aduin dragon AD6 and other dragons in the class -1-

Fig. 5 shows that dragons AD1 and AD7 are most similar to the dragon AD6 relative to dragons DR1, DR3 and DR5. This result proves that our similarity distance provides highly reliable measurement, but not at 100%.

Fig. 6 Measurement of similarity between dragon DR41 and other dragons in the class -2-

Fig. 6 shows that dragon DR41 is most similar to dragons DR43 and DR49 relative to other dragons.

For DR41-DR43 and DR41-DR49, we note that the symmetry increases proportionally with \(l \) and the object is identified. By cons, for low values of \(l \), the number of symmetries is insufficient to identify the objects. We also note that all curves are decreasing functions which show that the symmetry increases and the details of the object appear.

Experience 2

In this part of this article, to index objects with various densities of distribution, we will examine the influence of \(\epsilon \), where \(2\pi \epsilon \) is the side of the spherical square used for the integration (see Fig. 7). For this experience we choose \(l = 35 \), since the number of spherical harmonics and symmetry increase with \(l \), in which case we have more details for the object. For that purpose, We draw \(D = f(-\log_{10} \epsilon) \) for values of \(\epsilon \) varying in the interval \([10^{-20},10^{-1}]\).

Fig. 7 The measurement of similarity between dragon AD6 and other dragons in class-1 with \(\epsilon \) variance

Explanation of the Results:

Fig. 7 shows \(D = f(-\log_{10} \epsilon) \) passes always by a minimum \(\epsilon = 10^{-5} \), then it increases. It is due to several factors such as:

- The distribution and the density of points in the object;
- The number of points in the object.

We also note that for the value \(\epsilon = 10^{-5} \), Objects are similar because they have a very weak distance \(D \approx 2.54 \times 10^{-5} \). On the other hand, when the value of \(\epsilon \) decreases, we see that the distance increases with the number of points for various types of similar objects or not. To index well objects, the choice of \(\epsilon \) optimal has to be in the interval \([10^{-15},10^{-6}]\).

For the mathematicians, the point has no dimension. However, in the IT domain, the point has dimensions, what does not allow to choose \(\epsilon = 0 \). Because in our theory we integrate on a surface the center of which is a point of the object.
Figs. 8-10 represent the problem of increasing the density of points for the Aduin dragon and the optimal choice of the spherical surface width ε^2. Therefore ε' is the optimal choice of ε parameter.

Experience 3

In the next step, we test our new descriptor on the same object with different points as shown in Fig. 10:

![Image 10 The optimal choice of the spherical surface](image10)

Table V

<table>
<thead>
<tr>
<th>Object</th>
<th>Number of Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD6</td>
<td>8058</td>
</tr>
<tr>
<td>AD1</td>
<td>17387</td>
</tr>
<tr>
<td>AD7</td>
<td>19318</td>
</tr>
</tbody>
</table>

![Image 11 The same object with different number of points](image11)

Fig. 12 shows the existence of a low error due to augmentation of number of points for the same object. That’s why we define a coefficient of relative error δ as shown in:

$$\delta = \frac{|D_1 - D_2|}{D_1}$$

where D_1 and D_2 are respectively the distances between objects AD6 - AD7 and AD6 – AD1.

![Image 12 Measurement of the relative error between distances AD6-AD1 and AD6-AD7](image12)

We note that the relative error decreases as l increases. Either N_1 and N_2 are respectively the number of points for objects 1 and 2. If N_1 and N_2 are different, there has:

$$N_2 = N_1 + N \quad \text{or} \quad N_2 > N_1$$

where N is the difference of points between the objects 1 and 2. F_2 becomes:

$$F_2 = \left(\sum_{k=1}^{N/2} \left(\sum_{m=-l}^{l} C_{l,m}^2 \right) \right)^{1/(N+N)}$$

with $C_{l,m}^2$ are the spherical harmonic coefficients of the object 2.

Special case: $N \ll N_1$

Since the objects 1 and 2 have the same position of the points in the space with the difference in density In this case we can consider that the spherical harmonic coefficients $C_{l,m}^1$ are the same that is to say:

$$C_{l,m}^1 = C_{l,m}^2 = C_{l,m}$$

$$F_2 \approx F_1 \quad \text{thus} \quad D \approx 0$$
After mathematical development we obtain:

\[
F_2 = \left(\sum_{l=0}^{N_l} \sum_{m=-l}^{l} \left(\frac{1}{N_l} \sum_{k=1}^{N_i} C_{l,m}^{(k)} \right) \right) \left(\frac{1}{N} \sum_{j=1}^{N} \frac{1}{(2J+1)N_j} \right)
\]

we can write:

\[
F_2 = F_1 \times \sigma_{12}
\]

where \(\sigma_{12}\) is called correction term:

\[
\sigma_{12} = \left(\frac{1}{N} \sum_{j=1}^{N} \frac{1}{(2J+1)N_j} \right)
\]

Ideally \(\sigma_{12}\) tends to 1 to obtain \(F_2 = F_1\) and \(D = 0\).

V. CONCLUSION AND FUTURE WORK

In this work, we presented a new 3D shape descriptor, D.A.M.C-S.H.C. Direct and analytical method for calculating spherical harmonic coefficients and the indexing process provide a 3D shape descriptor robust to translation, rotation and scale variations. The D.A.M.C-S.H.C we developed has allowed us to present the efficiency of indexing the 3D objects in large databases, this global efficiency acting even for surfaces presented by a high density of points. It may be added that our descriptor satisfies the conditions created by the analysis of technical base models: the indexing process and robust and accurate research with very fast calculating of similarity.

Our future work concerns the correction term \(\sigma_{12}\), solving the problem of identical objects with different numbers of points (refatization), either by increasing or decreasing the points for reference object and for different position of points.

REFERENCES

spherical, cylindrical, and ellipsoidal harmonics, with applications to problems in mathematical physics.