%0 Journal Article
	%A Rupinder Kaur and  Parmjit S. Panesar and  Ram S. Singh
	%D 2015
	%J International Journal of Nutrition and Food Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 103, 2015
	%T Utilization of Whey for the Production of β-Galactosidase Using Yeast and Fungal Culture
	%U https://publications.waset.org/pdf/10001706
	%V 103
	%X Whey is the lactose rich by-product of the dairy
industry, having good amount of nutrient reservoir. Most abundant
nutrients are lactose, soluble proteins, lipids and mineral salts.
Disposing of whey by most of milk plants which do not have proper
pre-treatment system is the major issue. As a result of which, there
can be significant loss of potential food and energy source. Thus,
whey has been explored as the substrate for the synthesis of different
value added products such as enzymes. β-galactosidase is one of the
important enzymes and has become the major focus of research due
to its ability to catalyze both hydrolytic as well as
transgalactosylation reaction simultaneously. The enzyme is widely
used in dairy industry as it catalyzes the transformation of lactose to
glucose and galactose, making it suitable for the lactose intolerant
people. The enzyme is intracellular in both bacteria and yeast,
whereas for molds, it has an extracellular location. The present work
was carried to utilize the whey for the production of β-galactosidase
enzyme using both yeast and fungal cultures. The yeast isolate
Kluyveromyces marxianus WIG2 and various fungal strains have
been used in the present study. Different disruption techniques have
also been investigated for the extraction of the enzyme produced
intracellularly from yeast cells. Among the different methods tested
for the disruption of yeast cells, SDS-chloroform showed the
maximum β-galactosidase activity. In case of the tested fungal
cultures, Aureobasidium pullulans NCIM 1050 was observed to be
the maximum extracellular enzyme producer.
	%P 739 - 743