The Effect of Lime Stabilization on E. coli Destruction and Heavy Metal Bioavailability in Sewage Sludge for Agricultural Utilization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
The Effect of Lime Stabilization on E. coli Destruction and Heavy Metal Bioavailability in Sewage Sludge for Agricultural Utilization

Authors: G. Petruzzelli, F. Pedron, M. Grifoni, A. Pera, I. Rosellini, B. Pezzarossa

Abstract:

The addition of lime as Ca(OH)2 to sewage sludge to destroy pathogens (Escherichia coli), was evaluated also in relation to heavy metal bioavailability. The obtained results show that the use of calcium hydroxide at the dose of 3% effectively destroyed pathogens ensuring the stability at high pH values over long period and the duration of the sewage sludge stabilization. In general, lime addition decreased the total extractability of heavy metals indicating a reduced bioavailability of these elements. This is particularly important for a safe utilization in agricultural soils to reduce the possible transfer of heavy metals to the food chain.

Keywords: Biological sludge, Ca(OH)2, copper, pathogens, sanitation, zinc.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1106987

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2591

References:


[1] Commission of European Communities. Council Directive 86/278/EEC of 4 July 1986 “on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture”, 1986.
[2] D. Fytili and A. Zabaniotou, “Utilization of sewage sludge in EU application of old and new methods-A review”, Renew. Sust. Energ. Rev., vol. 12, pp. 116–140, 2008.
[3] EEA, “Waste” in Environmental signals 2001. European environment agency regular indicator report, pp 99-104, Copenhagen, 2001.
[4] M. Farzadkia and E. Bazrafshan, “Lime Stabilization of Waste Activated Sludge”, Health Scope vol. 3, August 2014.
[5] J. Werther and T. Ogada, “Sewage sludge combustion”, Prog. Energ. Combust., vol. 25, issue 1, pp. 55-116,February 1999.
[6] European Commission, “Current Sludge Production and Management in the EU” in Environmental, economic and social impacts of the use of sewage sludge on land. Final Report. Part III: Project Interim Reports, pp. 1-7, 2008.
[7] European Commission, “Parameters affecting the killing or inactivation of pathogens” in Evaluation of sludge treatments for pathogen reduction: Final Report, pp. 11-16, 2001.
[8] D.R. Fenlon, I.D. Ogden, A. Vinten and I. Svoboda, “The fate of Escherichia coliand E. coli 0157 in cattle slurry after application to land”, J. Appl. Microbiol. Symp. Suppl., vol. 88, pp.149S-156S, 2000.
[9] M.C. Collivignarelli, A. Abbà, S. Padovani, M. Frascarolo, D. Sciunnach, M. Turconi and M. Orlando, “Recuperodeifanghi di depurazione in agricoltura in lombardia: Prospettive e interventinormativi”, Proceedings SUM, Bergamo, Italy; 19-21 May 2014.
[10] F. Czechowski and T. Marcinkowski, “Sewage sludge stabilisation with calcium hydroxide: effect on physicochemical properties and molecular composition”, Wat. Res., vol. 40, pp. 1895-1905, 2006.
[11] J. W. C. Wong and M. Fang, “Effects of lime addition on sewage sludge composting process”, Wat. Res., vol. 34, no. 15, pp. 3691-3698, 2000.
[12] P. Samaras, C.A. Papadimitriou, I. Haritou and A.I. Zouboulis, “Investigation of sewage sludge stabilization potential by the addition of fly ash and lime”, J. Hazard. Mater., vol. 154, pp. 1052–1059, 2008.
[13] F. Pedron, G. Petruzzelli, M. Barbafieri and E. Tassi, “Remediation of a mercury-contaminated industrial soil using bioavailable contaminant stripping”, Pedosphere, vol. 23, pp. 104-110, 2013.
[14] F. Pedron, G. Petruzzelli, M. Barbafieri and E. Tassi, “Strategies to use phytoextraction in very acidic soil contaminated by heavy metals”, Chemosphere, vol. 75, pp. 808-814, 2009.
[15] Decretolegislativo 27 gennaio 1992, n. 99 “Attuazionedelladirettiva 86/278/CEE concernente la protezionedell’ambiente, in particolare del suolo, nell’utilizzazionedeifanghi di depurazione in agricoltura”, 1992.
[16] G. Petruzzelli, L. Lubrano and G. Guidi, “Uptake by corn and chemical extractability of heavy metals from a four year compost treated soil”, Plant Soil, vol. 116, pp. 23-27, 1989.
[17] G. Petruzzelli, “Recycling wastes in agriculture: heavy metal bioavailability”, Agric. Ecosyst. Environ., vol. 27, pp. 493–503, 1989.
[18] A. Fuentes, M. Lloréns, J. Sàez, A. Soler, M. I. Aguilar, J .F. Ortuño and V. F. Meseguer, “Simple and sequential extractions of heavy metals from different sewage sludges”, Chemosphere, vol. 54, pp. 1039-1047, 2004.
[19] E.A. Alvarez, M.C. Mochon, J.C.J. Sànchez, M.T. Rodriguez, “Heavy metal extractable forms in sludge from wastewater treatment plants”, Chemosphere, vol. 47, pp. 765-775, 2002.
[20] I. Da Silva, G. Abate. J. Lichtig and J. Masini, “Heavy metal distribution in recent sediments of Tietê-Pinheiros river system in Sao Paulo state, Brazil”, Appl. Geochem., vol. 17, pp.105-116, 2002.
[21] D.J. Ashworth and B.J. Alloway, “influence of dissolved organic matter on the solubility of heavy metals in sewage-sludge-amended soils”, Commun. Soil Sci. Plan., vol. 39, pp. 538-550, 2008.