@article{(Open Science Index):https://publications.waset.org/pdf/10001555,
	  title     = {The Effect of the Side-Weir Crest Height to Scour in Clay-Sand Mixed Sediments},
	  author    = {F. Ayça Varol Saraçoğlu and  Hayrullah Ağaçcıoğlu},
	  country	= {},
	  institution	= {},
	  abstract     = {Experimental studies to investigate the depth of the
scour conducted at a side-weir intersection located at the 1800 curved
flume which located Hydraulic Laboratory of Yıldız Technical
University, Istanbul, Turkey. Side weirs were located at the middle of
the straight part of the main channel. Three different lengths (25, 40
and 50 cm) and three different weir crest height (7, 10 and 12 cm) of
the side weir placed on the side weir station. There is no scour when
the material is only kaolin. Therefore, the cohesive bed was prepared
by properly mixing clay material (kaolin) with 31% sand in all
experiments. Following 24h consolidation time, in order to observe
the effect of flow intensity on the scour depth, experiments were
carried out for five different upstream Froude numbers in the range of
As a result of this study the relation between scour depth and
upstream flow intensity as a function of time have been established.
The longitudinal velocities decreased along the side weir; towards the
downstream due to overflow over the side-weirs. At the beginning,
the scour depth increases rapidly with time and then asymptotically
approached constant values in all experiments for all side weir
dimensions as in non-cohesive sediment. Thus, the scour depth
reached equilibrium conditions. Time to equilibrium depends on the
approach flow intensity and the dimensions of side weirs. For
different heights of the weir crest, dimensionless scour depths
increased with increasing upstream Froude number. Equilibrium
scour depths which formed 7 cm side-weir crest height were obtained
higher than that of the 12 cm side-weir crest height. This means when
side-weir crest height increased equilibrium scour depths decreased.
Although the upstream side of the scour hole is almost vertical, the
downstream side of the hole is inclined. },
	    journal   = {International Journal of Civil and Environmental Engineering},
	  volume    = {9},
	  number    = {5},
	  year      = {2015},
	  pages     = {636 - 640},
	  ee        = {https://publications.waset.org/pdf/10001555},
	  url   	= {https://publications.waset.org/vol/101},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 101, 2015},