First-Principles Investigation of the Structural and Electronic Properties of Mg1-xBixO
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32804
First-Principles Investigation of the Structural and Electronic Properties of Mg1-xBixO

Authors: G. P. Abdel Rahim, M. María Guadalupe Moreno Armenta, Jairo Arbey Rodriguez

Abstract:

We investigated the structure and electronic properties of the compound Mg1-xBixO with varying concentrations of 0, ¼, ½, and ¾ x bismuth in the the cesium chloride (CsCl), zinc-blende (ZnS), nickel arsenide (NiAs) NaCl (rock-salt) and WZ (wurtzite) phases. We calculated. The calculations were performed using the first-principles pseudo-potential method within the framework of spin density functional theory (DFT).

Keywords: DFT, Mg1-xBixO, pseudo-potential, rock-salt and wurtzite.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1338279

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055

References:


[1] G. Patricia Abdel Rahim, J. Arbey Rodriguez y M.G. Moreno Armenta, “Study ab-initio of the stability of the structural and electronic properties of Bi1-xMgxO,” ITECKNE, vol. 11, 2014, pp. 84 – 92.
[2] B. Amrani, R. Ahmed, F. El. Haj. Hassan, “Structural, electronic and thermodynamic properties of wide band gap MgxZn1-xO alloy,” Computational Materials Science, vol.40, 2007, pp. 66-72.
[3] G. Murtanza, I. Ahmad, B. Amin, A. Afaq, F. Ghafoor, A. Benamrani, “Linear and non-linear optical response of MgxZn1-xO: A Density Functional study,” Physica B: Condensed Matter, vol. 406, 2011, pp. 2632- 2636.
[4] G. Zhao, H. F. Mu, X. M. Tan, D. H. Wang, C. L. Yang, “Structural and dynamical properties of MgSiO3 melt over the pressure range 200-500 GPa: Ab initio molecular dynamics,” Journal of Non-Crystalline Solids, vol. 385, 2014, pp. 169-174.
[5] Ph. Hofmann, “The surfaces of bismuth: Structural and electronic properties,” Science Direct, vol. 81, 2006, pp. 191-245.
[6] G. Patricia Abdel Rahim, J. Arbey Rodriguez y M.G. Moreno Armenta, “The influence of pressure on the structural and electronic properties of Bi”
[7] G. Patricia Abdel Rahim, J. Arbey Rodriguez y M.G. Moreno Armenta, “Transiciones de fases y gap directo – indirecto inducidas por presión en MgO: Estudio mediante DFT” Rev. Cub. Fis. 31 No 1 E, E22 (2014).
[8] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitvh, “Quantum Espresso: a modular and ftware proyect for quantum simulations of materials” J. Phys. Condens. Matter, 21, 2009, p. 395502. Rev. Acad. Colomb. Cienc., 37 (1), 2013, pp 47-51.
[9] J. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett.77, 1996, p. 3865.
[10] K. Laasonen, A. Pasquarello, R. Car, C. Lee, D. Vanderbilt, “Car- Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials,” Physical Review B, vol. 47, 1993, pp. 10142-10153.
[11] H. J. Monkhorst, J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B, vol. 13, 1976, pp. 5188-5192.
[12] M. Methfessel, A.T. Paxon, Phys. Rev. B., 40 (1989), p. 3616.
[13] F. D. Murnaghan, Proc. Natl. Acad. Sci., USA 30:244, 1994, 49.