Thermodynamic Cycle Analysis for Overall Efficiency Improvement and Temperature Reduction in Gas Turbines
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
Thermodynamic Cycle Analysis for Overall Efficiency Improvement and Temperature Reduction in Gas Turbines

Authors: Jeni A. Popescu, Ionut Porumbel, Valeriu A. Vilag, Cleopatra F. Cuciumita

Abstract:

The paper presents a thermodynamic cycle analysis for three turboshaft engines. The first cycle is a Brayton cycle, describing the evolution of a classical turboshaft, based on the Klimov TV2 engine. The other four cycles aim at approaching an Ericsson cycle, by replacing the Brayton cycle adiabatic expansion in the turbine by quasi-isothermal expansion. The maximum quasi- Ericsson cycles temperature is set to a lower value than the maximum Brayton cycle temperature, equal to the Brayton cycle power turbine inlet temperature, in order to decrease the engine NOx emissions. Also, the power/expansion ratio distribution over the stages of the gas generator turbine is maintained the same. In two of the considered quasi-Ericsson cycles, the efficiencies of the gas generator turbine, as well as the power/expansion ratio distribution over the stages of the gas generator turbine are maintained the same as for the reference case, while for the other two cases, the efficiencies are increased in order to obtain the same shaft power as in the reference case. For the two cases respecting the first condition, both the shaft power and the thermodynamic efficiency of the engine decrease, while for the other two, the power and efficiency are maintained, as a result of assuming new, more efficient gas generator turbines.

Keywords: Combustion, Ericsson, thermodynamic analysis, turbine.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1100318

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2412

References:


[1] R.T. Balmer, "Modern Engineering Thermodynamics", Academic Press, 2011
[2] W. A. Sirignano, D. Dunn-Rankin, F. Liu, B. Colcord, S. Puranam, "Turbine Burners: Flameholding in Accelerating Flow", AIAA 2009 - 5410 in Proc. 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, Denver, Colorado, USA, August 2009
[3] D. G. Elliot, "Two-Fluid Magneto-Hydrodynamic Cycle for Nuclear- Electric Power Generation", ARS J., vol. 32, pp. 924-924, 1963
[4] F. Liu, W.A. Sirignano, "Turbojet and Turbofan Engine Performance Increases through Turbine Burners", J. Prop. Power, vol. 17, pp. 698- 705, 2001
[5] F. E. Marble, T. C. Adamson Jr., "Ignition and Combustion in a Laminar Mixing Zone", Jet Prop., vol. 24, pp. 85, 1954
[6] H. W. Emmons, "Thin Film Combustion of Liquid Fuel", Zeitschrift für Angewandte Mathematik und Mechanik, vol. 36, pp. 60, 1956
[7] P. M. Chang, "Chemically Reacting Nonequilibrium Boundary Layers", in "Advances in Heat Transfer", J.P. Hartnett and T.F. Irvine Jr., Ed., New York: Academic Press , 1965, pp. 109 - 270
[8] O. P. Sharma, W. A. Sirignano, "On the Ignition of a Premixed Fuel by a Hot Projectile", Comb. Sci. Tech., vol 1, pp. 481-494, 1970
[9] S. V. Patankar, D.B. Spalding, Heat and Mass Transfer in Boundary Layers, London: Intertext, UK, 1970
[10] P. Givi, J. I. Ramos, W. A. Sirignano, "Probability Density Function Calculation in Turbulent Chemically Reacting Round Jets, Mixing Layers and One-dimensional Reactors", J. Non-Equilibrium Thermodynamics, vol. 10, pp. 75-104, 1985
[11] J. Buckmaster, T. L. Jackson, A. Kumar, Combustion in High-Speed Flows, Dordrecht Kluwer Academic, 1994
[12] C. E. Grosch, T.L. Jackson, "Ignition and Structure of a Laminar Diffusion Flame in a Compressible Mixing Layer with Finite Rate Chemistry", Phys. Fluids A, vol. 3, pp. 3087-3097, 1991
[13] T. L. Jackson, M. Y. Hussaini, "An Asymptotic Analysis of Supersonic Reacting Mixing Layers", Comb. Sci. Tech., vol. 57, pp. 129, 1988
[14] H. G. Im, B. H. Chao, J. K. Bechtold, C.K. Law, "Analysis of Thermal Ignition in the Supersonic Mixing Layer", AIAA J., vol. 32, pp. 341-349, 1994
[15] H. G. Im, B. T. Helenbrook, S. R. Lee, C. K. Law, "Ignition in the Supersonic Hydrogen / Air Mixing Layer with Reduced Reaction Mechanisms", J. Fluid Mech., vol. 322, pp. 275-296, 1996
[16] D. Chakraborty, H.V.N. Upadhyaya, P.J. Paul, H.S. Mukunda, "A Thermo-chemical Exploration of a Two-dimensional Reacting Supersonic Mixing Layer", Phys. Fluids, vol. 9, no. 11, pp. 3513-3522, 1997
[17] W.A. Sirignano, I. Kim, "Diffusion Flame in a Two-dimensional Accelerating Mixing Layer", Phys. Fluids, vol. 9, no. 9, pp. 2617-2630, 1997
[18] X. Fang, F. Liu, W.A. Sirignano, "Ignition and Flame Studies for an Accelerating Transonic Mixing Layer", J. Prop. Power, vol. 17, no. 5, pp. 1058-1066, 2001
[19] C. Mehring, F. Liu, W.A. Sirignano, "Ignition and Flame Studies for a Turbulent Acceleration Transonic Mixing Layer" in Proc. 39th Aerospace Sciences Meeting, AIAA-2001-1096, Reno, Nevada, USA, January 2001
[20] J. Cai, O. Icoz, F. Liu, W.A. Sirignano, "Ignition and Flame Studies for Turbulent Transonic Mixing in a Curved Duct Flow" in Proc. 39th Aerospace Sciences Meeting, AIAA-2001-0189, Reno, Nevada, USA, January 2001
[21] J. Cai, O. Icoz, F. Liu, W.A. Sirignano, "Combustion in a Transonic Turbulent Flow with Large Axial and Transverse Pressure Gradients" in Proc. 18th ICDERS, Seattle, Washington, USA, July - August 2001
[22] F. Cheng, F. Liu, W.A. Sirignano, "Nonpremixed Combustion in an Accelerating Turning, Transonic Flow Undergoing Transition", AIAA J., vol. 45, pp. 2935-2946, 2007
[23] F. Cheng, F. Liu, W.A. Sirignano, "Nonpremixed Combustion in an Accelerating Transonic Flow Undergoing Transition", AIAA J, vol. 46, pp. 1204-1215, 2008
[24] F. Cheng, F. Liu, W.A. Sirignano, "Reacting Mixing-Layer Computations in a Simulated Turbine Stator Passage", J. Prop. Power, vol. 25, no. 2, 2009
[25] J. Zelina, G.J. Sturgess, D.T. Shouse, "The Behaviour of an Ultra- Compact Combustor (UCC) Based on Centrifugally - Enhanced Turbulent Burning Rates", in Proc. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, Fort Lauderdale, FloridAIAA-2004-3541, July 2004
[26] R.J. Quaale, R.A. Anthenien, J. Zelina, J. Ehret, "Flow Measurements in a High Swirl Ultra Compact Combustor for Gas Turbine Engines", in Proc. 16th ISABE Conf., ISBAE 2003-1141, Cleveland, Ohio, USA, September 2003
[27] J. Zelina, D.T. Shouse, R.D. Hancock, "Ultra-Compact Combustors for Advenced Gas Turbine Engines", in Proc. ASME Turbo Expo 2004, 2004-GT-53155, Vienna, Austria, June 2004
[28] J. Zelina, G.J. Sturgess, A. Mansour, R.D. Hancock, "Fuel Injection Design Optimization for an Ultra-Compact Combustor", in Proc. 16th ISABE Conf., ISABE 2003-1079, Cleveland, Ohio, USA, September 2003
[29] K.C. Lin, K.A. Kirdendall, P.J. Kennedy, T.A. Jackson, "Spray Structures of Aerated Liquid Fuel Jets in Supersonic Crossflows", in Proc. 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conf., AIAA-99- 2374, Los Angeles, California, USA, June 1999
[30] K.C. Lin, P.J. Kennedy, T.A. Jackson, "Spray Penetration Heights of Angle Injected Aerated Liquid Jets in Supersonic Crossflows", in Proc. 38th Aerospace Sciences Meeting, AIAA-2000-0194, Reno, Nevada, USA, 2000
[31] K.Y. Hsu, C. Carter, J. Crafton, M. Gruber, J. Donbar, T. Mathur, D. Schommer, W. Terry, "Fuel Distribution About a Cavity Flameholder in Supersonic Flow", in Proc. 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conf., AIAA-2000-3585, Huntsville, Alabama, USA, July 2000
[32] T. Mathur, S. Cox-Staufer, K.Y. Hsu, J. Crafton, J. Donbar, M. Gruber, "Experimental Assessment of a Fuel Injector for Scramjet Applications", in Proc. 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conf., AIAA- 2000-3703, Huntsville, Alabama, USA, July 2000
[33] M. Gruber, J. Donbar, T. Jackson, T. Mathur, D. Eklund, F. Bilig, "Performance of an Aerodynamic Ramp Fuel Injector in a Scramjet Combustor", in Proc. 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conf., AIAA-2000-3708, Huntsville, Alabama, USA, July 2000
[34] T. Mathur, K.C. Lin, P.J. Kennedy, M. Gruber, J. Donbar, T. Jackson, F. Bilig, "Liquid JP-7 Combustion in a Scramjet Combustor", in Proc. 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conf., AIAA-2000-3581, Huntsville, Alabama, USA, July 2000
[35] G. Yu, J.G. Li, X.Y. Chang, L.H. Chen, "Investigation of Fuel Injection and Flame Stabilization in Liquid Hydrocarbon - Fueled Supersonic Combustion", in Proc. 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conf., AIAA-2000-3581, Huntsville, Alabama, USA, July 2000
[36] G. Yu, J.G. Li, X.Y. Chang, L.H. Chen, C.J. Sung, "Investigation on Combustion Characteristics of Kerosene Hydrogen Dual Fuel in a Supersonic Combustor", in Proc.36th Joint Propulsion Specialists Meeting, AIAA-2000-3620, 2000
[37] W.A. Sirignano, D. Dunn-Rankin, F. Liu, B. Colcord, S. Puranam, "Turbine Burners: Flameholding in Accelerating Flow", in Proc. 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, AIAA 2009 - 5410, Denver, Colorado, USA, August 2009
[38] D.T. Shouse, R.C. Hendricks, D.L. Burrus, W.M. Roquemore, R.C. Ryder, B.S. Duncan, N.S. Liu, A. Brankovic, J.A. Hendricks, J.R. Gallagher, "Experimental and Computational Study of Trapped Vortex Combustor Sector Rig with Tri-pass Diffuser". NASA Report, Glenn Research Center, 2004
[39] A. Lapsa, J.A. Dahm, "Experimental Study on the Effects of Large Centrifugal Forces on Step Stabilized Flames", in Proc. 5th US Combustion Meeting, San Diego, California, USA, March 2007
[40] J. Zelina, D.T. Shouse, G.J. Sturgess, W.M. Roquemore, "Emissions Reduction Technologies for Military Gas Turbine Engines", J. Prop. Power, vol. 21, no. 2, 2004
[41] R.S. Bunker, "Integration of New Aero-thermal and Combustion Technologies with Long Term Design Philosophies for Gas Turbine Engine", in Proc. US Ukrainian Workshop on Innovative Combustion and Aerothermal Technologies in Energy and Power Systems, Kiev, Ukraine, May 2001
[42] C. Stone, S. Menon, "Simulation of Fuel / Air Mixing and Combustion in a Trapped Vortex Combustor", in Proc. 38th AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2000-0478, Reno, Nevada, USA, 2000
[43] J. Zelina, "Numerical Studies on Cavity Inside Cavity Supported in Ultra Compact Combustors", in Proc. ASME Turbo 2008, Berlin, Germany, June 2008
[44] D.T. Shouse, J. Zelina, R.D. Hancock, "Operability and Efficiency Performance of Ultra-compact, High Gravity (g) Combustor Concepts", in Proc. ASME Turbo 2006, Barcelona, Spain, May 2006
[45] T.E. Lippert, R.A. Newby, D.M. Bachovchin, "Gas Turbine Reheat using In-situ Combustion", Topical Report: Task 4. Conceptual Design and Development Plan., 2004
[46] T.E. Lippert, R.A. Newby, D.M. Bachovchin, "Gas Turbine Reheat using In-situ Combustion", Topical Report: Task 4. Conceptual Design and Development Plan., 2004
[47] European Commission, Flightpath 2050 Europe’s Vision for Aviation, Luxembourg: Publications Office of the European Union, 2011
[48] V. Pimnsner - "Motoare aeroreactoare. Vol. I" Editura Didactica si Pedagogica, Bucuresti, 1983
[49] Klimov Corporation, “Motorul de aviatie turbopropulsor TV2-117A si reductorul VR-8”, Ministerul Transporturilor si Telecomunicatiilor, Bucuresti, 1973
[50] V. Stanciu - "Motoare aeroreactoare (Indrumar de anteproiectare)". Institutul Politehnic Bucuresti. Facultatea de Aeronave. Bucuresti, Romania, 1992