A β-mannanase from Fusarium oxysporum SS-25 via Solid State Fermentation on Brewer’s Spent Grain: Medium Optimization by Statistical Tools, Kinetic Characterization and Its Applications
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
A β-mannanase from Fusarium oxysporum SS-25 via Solid State Fermentation on Brewer’s Spent Grain: Medium Optimization by Statistical Tools, Kinetic Characterization and Its Applications

Authors: S. S. Rana, C. Janveja, S. K. Soni

Abstract:

This study is concerned with the optimization of fermentation parameters for the hyper production of mannanase from Fusarium oxysporum SS-25 employing two step statistical strategy and kinetic characterization of crude enzyme preparation. The Plackett-Burman design used to screen out the important factors in the culture medium revealed 20% (w/w) wheat bran, 2% (w/w) each of potato peels, soyabean meal and malt extract, 1% tryptone, 0.14% NH4SO4, 0.2% KH2PO4, 0.0002% ZnSO4, 0.0005% FeSO4, 0.01% MnSO4, 0.012% SDS, 0.03% NH4Cl, 0.1% NaNO3 in brewer’s spent grain based medium with 50% moisture content, inoculated with 2.8×107 spores and incubated at 30oC for 6 days to be the main parameters influencing the enzyme production. Of these factors, four variables including soyabean meal, FeSO4, MnSO4 and NaNO3 were chosen to study the interactive effects and their optimum levels in central composite design of response surface methodology with the final mannanase yield of 193 IU/gds. The kinetic characterization revealed the crude enzyme to be active over broader temperature and pH range. This could result in 26.6% reduction in kappa number with 4.93% higher tear index and 1% increase in brightness when used to treat the wheat straw based kraft pulp. The hydrolytic potential of enzyme was also demonstrated on both locust bean gum and guar gum.

Keywords: Brewer’s Spent Grain, Fusarium oxysporum, Mannanase, Response Surface Methodology.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1099338

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5132

References:


[1] M.S. Buckeridge, Pessoa, H. dos Santos, M.A.S. Tine, “Mobilisation of storage cell wall polysaccharides in seeds,” Plant Physiol. Biochem., vol. 38, pp.141-156, 2000.
[2] P. Capoe, M. Kubackova, J. Alfoldi, “Galactoglucomannan from the secondary cell wall of Picea abies.L.Krast,” Carbohydr. Res., vol. 329, pp. 635-645, 2000.
[3] J. Lundqvist, A. Teleman, L. Junel, G. Zacch, O. Dahlman, F. Tjerneld, H. Stabrand, “Isolation and characterization of galactoglucomannan from spruce (Picea abies),” Carbohydr. Polym., vol. 48, pp. 29-39, 2002.
[4] M.G. Handford, T.C. Baldwin, F. Goubet, T.A. Prime, J. Miles, X. Yu, P. Dupree, “Localisation and characterisation of cell wall mannan polysaccharides in Arabidopsis thaliana,” Planta., vol. 218, pp. 27–36, 2003.
[5] B.V. McCleary, A.W. Willis, T.K. Scott, “Synthesis of β-- mannopyranosides for the assay of β--mannosidase and exo-β— mannanase,” Methods Enzymol., vol. 160, pp. 515-518,1988.
[6] L.R.S. Moreira, E.F.X. Filho, “An overview of mannan structure and mannan degrading enzyme systems,” Appl. Microbiol. Biotechnol., vol. 79, pp.165–178,2008.
[7] M. Tenkanen, “Action of Trichoderma reesei and Aspergillus oryzae esterases in the deacetylation of hemicelluloses,” Biotechnol. Appl. Biochem., vol. 27, pp.19-24, 1998.
[8] S. Dhawan, J. Kaur, “Microbial mannanases: an overview of production and applications. Crit. Rev. Biotechnol., vol. 27, pp. 197–216, 2007.
[9] L. Viikari, J. Sandqvist and J. Kettunen, “Xylanase promote pulp bleaching,” Paperi.Ja.Puu. vol. 73, pp. 384-389, 1991.
[10] M. Jackson, “Improving soya utilization in monogastrics: maize soya diets with β-mannanase,” Feed Int., vol. 12, pp. 22–26, 2001.
[11] R.M. Burke, J.W.G. Cairney, “Carbohydrolase production by the ericoid mycorrhizal fungus Hymenoscyphus ericae under solid state fermentation conditions,” Mycol. Res., vol. 101, pp.1135–1139, 1997.
[12] G. Wu, M.M. Bryant, R.A. Voitle, “Effects of β-mannnaase in corn-soy diets on commercial leghorns in second-cycle hens,” Poult. Sci., vol. 84, pp. 894–897, 2005.
[13] W. Grajek, “Comparative studies on the production of cellulases by thermophilic fungi in submerged and solid state fermentation,” Appl. Microbiol. Biotechnol., vol. 26, pp.126–129, 1987.
[14] S.K.Soni, N. Batra, N. Bansal, R. Soni, “Bioconversion of sugarcane bagasse into second generation bioethanol after enzymatic hydrolysis within house produced cellulases from Aspergillus sp. S4B2F,” BioRes., vol. 5, pp. 741-758,2010.
[15] N. Bansal, R. Tewari, J.K. Gupta, S.K. Soni, R. Soni, “A novel strain of Aspergillus niger producing a cocktail of industrial depolymerising enzymes for the production of second generation biofuels,” BioRes., vol. 6, pp. 552-569,2011.
[16] R.S.Laxman, A.P.Sonawane, S.V.More, B.S.Rao, M.V.Rele, V.V. Jogdand, V.V. Deshpande, M.B. Rao, “Optimization and scale up of production of alkaline protease from Conidiobolus coronatus,” Process Biochem., vol. 40, pp.3152–3158, 2005.
[17] M. M. Mudau, M. E. Setati, “Screening and identification of endomannanase-producing microfungi from hypersaline environments,” Curr. Microbiol., vol. 52, pp. 477- 481, 2006.
[18] Y.N. Li, K. Meng, Y.R.Wang, B. Yao, “A β-Mannanase from Bacillus subtilis B36: Purification, Properties, Sequencing, Gene Cloning and Expression in Escherichia coli,” Z. Naturforsch, vol. 61, pp. 840-846, 2006.
[19] S.S. Lin, W.F. Dou, H. Xu, Z.H. Xu, Y. Ma, “Optimization of medium composition for the production of alkaline β-mannanase by alkaliphilic Bacillus sp. N16-5 using response surface methodology,” Appl. Microbiol. Biotechnol., vol. 75, pp. 1015–1022, 2007.
[20] R.L. Plackett, J.P. Burman, “The design of optimum multifactorial experiments,” Biometrika, vol. 33, pp. 305–325, 1946.
[21] A. Salihu, M.Z. Alam, M.I. AbdulKarim, H. M. Salleh, “Optimization of lipase production by Candida cylindracea in palm oil mill effluent based medium using statistical experimental design,” J. Mol. Catal. Enzym., vol. 69, pp. 66–73, 2011.
[22] F.J. Cui, Z.Q. Liu, Y. Li, L.F. Ping, L.Y. Ping, Z.C. Zhang, L. Lin , Y. Dong, D.M. Huang, “Production of mycelial biomass and exo-polymer by Hericium erinaceus CZ-2: Optimization of nutrients levels using response surface methodology,” Biotechnol. Bioproc., vol. 15, pp. 299– 307, 2010.
[23] X.S. Chen, L. Tang, S. Li, L.J. Liao, J. H. Zhang, Z.G. Mao, “Optimization of medium for enhancement of epsilon-poly-L-lysine production by Streptomyces sp. M-Z18 with glycerol as carbon source,” Bioresour. Technol., vol. 102, pp. 1727–1732, 2011.
[24] B. J. Naveena, C. Vishnu, M. Altaf, R. Gopal, “Wheat bran an inexpensive substrate for production of lactic acid in solid state fermentation by Lactobacillus amylophilus GV6-optimization of fermentation conditions,” J. Sci. Ind. Res., vol. 62, pp. 453-456, 2003.
[25] G.T. Dobrev, I.G. Pishtiyski, V.S. Stanchev, R. Mircheva, “Optimization of nutrient medium containing agricultural wastes for xylanase production by Aspergillus niger B03 using optimal composite experimental design,” Bioresour. Technol., vol. 98, pp. 2671– 2678, 2007.
[26] S.R. Senthilkumar, B. Ashokkumar, K. Chandra Raj, P. Gunasekaran, “Optimization of medium composition for alkali-stable xylanase production by Aspergillus fischeri Fxn 1 in solid-state fermentation using central composite rotary design,” Bioresour. Technol., vol. 96, pp. 1380–1386, 2005.
[27] S. Kim, C.H. Kim, “Production of cellulase enzymes during the solidstate fermentation of empty palm fruit bunch fiber,” Bioprocess Biosyst. Eng., vol. 35, pp. 61-67, 2012.
[28] G.L. Miller, “Use of dinitrosalicylic acid reagent for determination of reducing sugars,” Anal. Chem., vol. 31, pp. 426– 428, 1959.
[29] Anonymous,“TAPPI testmethods.”TAPPI Press, Atlanta, USA, 1991.
[30] T. Juhasz, Z. Szengyel, K. Reczey, M. Siika-Aho, L. Viikari, “Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources,” Proc. Biochem., vol. 40, pp. 3519–3525, 2005.
[31] S. Bauer, P. Vasu, S. Persson, A.J. Mort, C.R. Somerville, “Development and application of a suite of polysaccharide-degrading enzymes for analyzing plant cell walls,” Proc. Natl. Acad. Sci. USA, vol. 103, pp. 11417–11422, 2006.
[32] T.C. Lin, C. Chen, “Enhanced mannanase production by submerged culture of Aspergillus niger NCH-189 using defatted copra based media,” Proc. Biochem., vol. 39, pp. 1103–1109, 2004.
[33] J.X. Heck, L. H. B. Soares, M. A. Z. Ayub, “Optimization of xylanase and mannanase production by Bacillus circulans strain BL53 on solidstate cultivation,” Enzyme Microb. Technol., vol. 37, pp. 417–423, 2005.
[34] B. Ozturk, D. Cekmecelioglu, Z. B. Ogel, “Optimal conditions for enhanced -mannanase production by recombinant Aspergillus sojae,” J. Mol. Catal. B: Enzym., vol. 64, pp. 135–139, 2010.
[35] F. Francis, A. Sabu, K. M. Nampoothiri, S. Ramachandran, S. Ghosh, G. Szakacs, A. Pandey, “Use of response surface methodology for optimizing process parameters for the production of α-amylase by Aspergillus oryzae,” Biochem. Eng. J., vol. 15, pp.107-115, 2003.
[36] S. Kar, S. Gauri, A. Das, A. Jana, C. Maity, A. Mandal, P.K. Mohapatra, B.R. Pati, K.C. Mondal, “Process optimization of xylanase production using cheap solid substrate by Trichoderma reesei SAF3 and study on the alteration of behavioral properties of enzyme obtained from SSF and SmF,” Bioprocess Biosyst. Eng., vol. 36, pp. 57-68, 2012.
[37] S. Lee, Y. Jang, Y.M. Lee, J. Lee, H. Lee, G.H. Kim, J.J. Kim, “Rice straw-decomposing fungi and their cellulolytic and xylanolytic enzymes,” J. Microbiol. Biotechnol., vol. 21, pp. 1322-1329, 2011.
[38] S. Kim, C.H. Kim, “Production of cellulase enzymes during the solidstate fermentation of empty palm fruit bunch fiber,” Bioprocess Biosyst. Eng., vol. 35, pp. 61-67, 2012.
[39] M.M. Nasab, M.M. Nasab, “Utilization of sugar beet pulp as a substrate for the fungal production of cellulase and bioethanol,” Afr. J. Microbiol. Res., vol. 4, pp. 2556-2561, 2010.
[40] H. Sun, X. Ge, Z. Ha, M. Peng, “Cellulase production by Trichoderma sp. on apple pomace under solid state fermentation,” Afr. J. Biotechnol., vol. 9, pp. 163-166, 2010.
[41] N. Verma, C.M. Bansal, V. Kumar, “Pea peel Waste: A lignocellulosic waste and its utility in cellulase production by Trichoderma reesei under solid state cultivation,” BioRes., vol. 6, pp. 1505-1519, 2011.
[42] W.L. Chen, J.B. Liang, M.F. Jahromi, Y.W. Ho, N. Abdullah, “Optimization of multi-enzyme production by fungi isolated from palm kernel expeller using Response Surface Methodology,” BioRes., vol. 8, pp. 3844-3857, 2013.
[43] A.O. Adesina, Oluboyede, A.A. Onilude, “Production, purification and characterisation of a β-mannanase by Aspergillus niger through solid state fermentation (SSF) of Gmelina arborea shavings Felicia C.,” Afri. J. Microbio. Res., vol. 7, pp. 282-289, 2013.
[44] C. Xiros, E. Topakas, P. Katapodis, P. Christakopoulos, “Hydrolysis and fermentation of brewer’s spent grain by Neurospora crassa,” BioRes., vol. 99, pp. 5427-5435, 2008.
[45] S. Aliyu, M. Bala, “Brewer’s spent grain: A review of its potentials and applications,” Afr. J. Biotechnol., vol. 10, pp. 324-331, 2011.
[46] M. Muthukumar, D. Mohan, M. Rajendran, “Optimization of mix proportions of mineral aggregates using Box Behnken design of experiments,” Cem. Concr. Compos., vol. 25, pp. 751–758, 2003.
[47] R.A.Stowe, R.P. Mayer, “Efficient screening of process variables,” Ind. Eng. Chem., vol. 58, pp. 36-40, 1966.
[48] L. Huiping, Z. Guoqun, N. Shanting, L. Yiguo, “Technologic parameter optimization of gas quenching process using response surface method,” Comput. Mater. Sci., vol. 38, pp. 561–570, 2007.
[49] J. Segurola, N.S. Allen, M. Edge, A.M. Mahon, “Design of eutectic photo initiator blends for UV/curable acrylated printing inks and coatings,” Prog. Org. Coat., vol. 37, pp. 23–37, 1999.
[50] H.L. Liu, Y.W. Lan, and Y.C. Heng, “Optimal production of sulphuric acid by Thiobacillus thiooxidans using response surface methodology,” Proc. Biochem., vol. 39, pp. 1953–1961, 2004.