Solving Linear Matrix Equations by Matrix Decompositions

Yongxin Yuan, Kezheng Zuo

Abstract—In this paper, a system of linear matrix equations is considered. A new necessary and sufficient condition for the consistency of the equations is derived by means of the generalized singular-value decomposition, and the explicit representation of the general solution is provided.

Keywords—Matrix equation, Generalized inverse, Generalized singular-value decomposition.

I. INTRODUCTION

We consider the solution of the linear matrix equations

\[
\begin{align*}
A_1 X & = C_1, \\
A_2 Y & = C_2, \ Y B_2 & = D_2, \ Y = Y^H, \\
A_3 Z & = C_3, \ Z B_3 & = D_3, \ Z = Z^H, \\
A_4 X + (A_4 X)^H + B_4 Y B_4^H + C_4 Z C_4^H & = D_4,
\end{align*}
\]

where

\[
\begin{align*}
A_1 & \in \mathbb{C}^{a_1 \times m}, \ C_1 \in \mathbb{C}^{a_1 \times n}, \\
A_2, C_2 & \in \mathbb{C}^{a_2 \times p}, \ B_2, D_2 \in \mathbb{C}^{p \times k_2}, \\
A_3, C_3 & \in \mathbb{C}^{a_3 \times q}, \ B_3, D_3 \in \mathbb{C}^{q \times k_3}, \\
A_4 & \in \mathbb{C}^{n \times m}, \ B_4 \in \mathbb{C}^{n \times p}, \ C_4 \in \mathbb{C}^{n \times q},
\end{align*}
\]

and

\[
D_4 = D_4^H \in \mathbb{C}^{n \times n}.
\]

Solvability and solutions of matrix equations have been one of principle topics in matrix analysis and its applications. For instance, Mitra [1] considered solutions with fixed ranks for the matrix equations \(AX = B\) and \(AXB = C\). Mitra [2] gave common solutions of minimal rank of the pair of matrix equations \(AX = C, XB = D\). Uhlig [3] gave the maximal and minimal ranks of solutions of the equation \(AX = B\). Mitra [4] examined common solutions of minimal rank of the pair of matrix equations \(A_1 X B_1 = C_1\) and \(A_2 X B_2 = C_2\). In 2006, Lin and Wang in [5] studied the extreme ranks of solutions to the system of matrix equations \(A_1 X = C_1, XB_2 = C_2, A_3 XB_3 = C_3\) over an arbitrary division ring, which was investigated in [6] and [7]. Liu [8] derived the maximal and minimal ranks of least squares solutions for \(AXB = C\) using the matrix rank method and the normal equation. Cvetković-Ilić [9], Peng, Hu and Zhang [10] considered the reflexive and anti-reflexive solutions of the matrix equation \(AXB = C\) by means of generalized inner inverse and the generalized singular-value decomposition. In the papers [11–13], necessary and sufficient conditions for the existence of symmetric and anti-symmetric solutions of the equation \(AXB = C\) were investigated.

Wu [14] studied Re-pd solutions of the equation \(AX = C\) and Wu and Cain [15] found the set of all complex Re-nnd matrices \(X\) such that \(XB = C\) and presented a criterion for Re-nndness. Größ [16] gave an alternative approach, which simultaneously delivers explicit Re-nnd solutions and gave a corrected version of some results from [15]. Recently, in [17] and [18], the common Re-nnd and Re-pd solutions of the matrix equations \(AX = C, XB = D\), where \(A, C \in \mathbb{C}^{n \times m}\) and \(B, D \in \mathbb{C}^{m \times n}\), are considered by virtue of the maximal and minimal ranks of matrix polynomials. Wang and Yang [19] presented criteria for \(2 \times 2\) and \(3 \times 3\) partitioned matrices to be Re-nnd, found necessary and sufficient conditions for the existence of Re-nnd solutions of \(AXB = C\) and derived an expression for these solutions. In the special case that \(A\) and \(B\) are both nonnegative matrices, Cvetković-Ilić [20] put forward a necessary and sufficient condition for the existence of Re-nnd solutions of \(AXB = C\) in terms of g-inverses. Zhang, Sheng and Xu [21] generalized the main results of [20] from the finite-dimensional case to the Hilbert space operator case.

Matrix equations such as \(A_4 X + (A_4 X)^H + B_4 Y B_4^H + C_4 Z C_4^H = D_4\), which are the special cases of (1), arise in a number of practical applications in linear system theory, numerical analysis and structural dynamics, and have been studied by Braden [22], Djordjević [23], Yuan [24, 25], Dai and Lancaster [26], Baksalary [27], Größ [28], Liu, Tian and Takane [29], Liao and Bai [30], Deng and Hu [31] and Liu and Tian [32], and so forth.

Very recently, Wang and He [33] derived the solvability conditions and the expression of the general solution to the matrix equations of (1) by virtue of the maximal and minimal ranks of matrix polynomials. In this paper, we will provide a new approach based on the generalized inverses and the generalized singular-value decomposition (GSVD) to solve (1). In Section II, we establish a necessary and sufficient

Yongxin Yuan: School of Mathematics and Statistics, Hubei Normal University, Huangshi, 453002, PR China (e-mail: yuanyx_703@163.com).

Kezheng Zuo: School of Mathematics and Statistics, Hubei Normal University, Huangshi, 453002, PR China (e-mail: Xiangzuo28@163.com).
condition for the existence of the solution of (1) directly by means of the GSVD, and construct the explicit representation of the general solution when it is solvable. Throughout this paper, we denote the complex matrix space by \(\mathbb{C}^{m \times n} \), the conjugate transpose and the Moore-Penrose generalized inverse of a complex matrix \(A \) by \(A^H \) and \(A^+ \), respectively. \(I_n \) represents the identity matrix of size \(n \). Furthermore, for a matrix \(A \in \mathbb{C}^{m \times n} \), let \(E_A \) and \(F_A \) stand for the two orthogonal projectors: \(E_A = I_n - AA^+ \) and \(F_A = I_n - A^+A \).

II. The Solution of (1)

Let \(G_1 \in \mathbb{C}^{n \times q} \), \(G_2 \in \mathbb{C}^{n \times d} \), then the GSVD (see, e.g., [34–36]) of the matrix pair \((G_1, G_2)\) is of the form

\[
G_1 = N\Omega_1 P^H, \quad G_2 = N\Omega_2 Q^H,
\]

where \(P \in \mathbb{C}^{q \times q} \), \(Q \in \mathbb{C}^{d \times d} \) are unitary matrices and \(N \in \mathbb{C}^{n \times n} \) is a nonsingular matrix, and

\[
\Omega_1 = \begin{bmatrix} I & 0 & 0 \\ 0 & S_1 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} h & t & 0 \\ 0 & t & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \Omega_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & S_2 & 0 \\ 0 & 0 & I \end{bmatrix} = \begin{bmatrix} h & t & 0 \\ 0 & t & 0 \\ 0 & 0 & n - e \end{bmatrix},
\]

\[u = d + h - e - t, \quad h = \text{rank}(G_1), \quad e = \text{rank}(G_1, G_2), \]

and

\[S_1 = \text{diag} \{ \gamma_1, \cdots, \gamma_t \}, \quad S_2 = \text{diag} \{ \delta_1, \cdots, \delta_t \}, \]

where \(L \in \mathbb{C}^{n \times l} \) is an arbitrary matrix.

Lemma 2: [38] Let \(A, B \in \mathbb{C}^{p \times q} \), then the matrix equation

\[AY = B \]

has a Hermitian solution \(Y \in \mathbb{C}^{p \times q} \) if and only if

\[BA^H = AB^H, \quad AA^+B = B, \]

in which case, the general Hermitian solution is

\[Y = A^+B + FA(A^+B)^H + FAKEA, \]

where \(K \in \mathbb{C}^{p \times p} \) is an arbitrary Hermitian matrix.

Lemma 3: [22, 24] Let \(A \in \mathbb{C}^{m \times n} \), \(D \in \mathbb{C}^{m \times m} \). Then the matrix equation

\[AX^H + XA^H = D \]

has a solution \(X \) if and only if

\[D = D^H, \quad EADE_A = 0, \]

in which case, the general solution is

\[
X = \frac{1}{2}D(A^+) + \frac{1}{2}EA(D(A^+))^H + V - \frac{1}{2}VA^+A
- \frac{1}{2}A(\bar{V})^H(A^+) - \frac{1}{2}EVA^+A, \]

where \(V \in \mathbb{C}^{m \times n} \) is an arbitrary matrix.

It follows from Lemma 1 that the matrix equation \(A_1X = C_1 \) has a solution \(X \in \mathbb{C}^{m \times n} \) if and only if

\[A_1A^+C_1 = C_1. \]

In this case, the general solution of the equation can be described as

\[X = A_1C_1 + FA_1L, \]

where \(L \in \mathbb{C}^{m \times l} \) is an arbitrary matrix.

Let

\[A^H = [A_2^H, B_2]^H, \quad B^H = [C_2^H, D_2]^H. \]

By Lemma 2, we know the matrix equations

\[A_2Y = C_2, \quad YB_2 = D_2 \]

has a Hermitian solution \(Y \) if and only if

\[AA^+B = B, \quad AB^H = BA^H, \]

in which case the general Hermitian solution of the equation can be expressed as

\[Y = A^+B + FA(A^+B)^H + FAKEA, \]

where \(K \in \mathbb{C}^{p \times p} \) is an arbitrary Hermitian matrix. Likewise, let

\[C^H = [A_3^H, B_3]_H, \quad D^H = [C_3^H, D_3]_H, \]

then the matrix equations

\[A_3Z = C_3, \quad ZB_3 = D_3 \]
has a Hermitian solution Z if and only if
\[CC^+D = D, CD^H = DC^H, \]
in which case the general Hermitian solution of the equation can be expressed as
\[Z = C^+D + F_C(C^+D)^H + F_C JF_C, \] (5)
where $J \in \mathbb{C}^{n \times q}$ is an arbitrary Hermitian matrix.

By substituting (3), (4) and (5) into the fourth equation of (1), we obtain
\[M_1L + L^HM_1^H + M_2KM_2^H + M_3JM_3^H = W_1, \] (6)
where
\[M_1 = A_1FA_1, \quad M_2 = B_4FA, \quad M_3 = C_4FC \]
and
\[W_1 = D_4 - A_1A_1^HC_1 - (A_4^AH_1^C)D - B_4A_B^BB_4^H \]
\[- B_4FA(B_4A_B^B)^H - C_4C^D + C_4F_C(C_4C^D)^H. \]

According to Lemma 3, the equation of (6) with respect to L is solvable if and only if
\[G_1KG_1^H + G_2KG_2^H = W, \] (7)
and the general solution of (6) with respect to L can be expressed as
\[L = \frac{1}{2}M_1^+ \hat{D} + \frac{1}{2}M_1^+ \hat{D}E_{M_1} + U - \frac{1}{2}M_1^+ M_1U \]
\[- \frac{1}{2}M_1^+ U^HM_1^H - \frac{1}{2}M_1^+ M_1U E_{M_1}, \] (8)
where
\[G_1 = E_{M_1}M_2, \]
\[G_2 = E_{M_1}M_3, \]
\[W = E_{M_1}W_1E_{M_1}, \]
\[\hat{D} = W_1 - M_2KM_2^H - M_3JM_3^H \]
and U is an arbitrary matrix.

By (2), the equation of (7) can be equivalent written as
\[\Omega_1P^H\Omega_1 = \Omega_2Q^HJQ_2^H = N^{-1}W(N^{-1})^H. \] (9)

Write
\[P^HKP = [K_{ij}]_{3 \times 3}, \quad K_{ij} = K_{ij}^H, \quad i,j = 1, 2, 3, \]
\[Q^HJQ = [J_{ij}]_{3 \times 3}, \quad J_{ij} = J_{ij}^H, \quad i,j = 1, 2, 3, \]
\[N^{-1}W(N^{-1})^H = [W_{ij}]_{4 \times 4}, \quad W_{ij} = W_{ij}^H, \quad i,j = 1, 2, 3, 4. \] (12)

and the partitions of the matrices P^HKP, Q^HJQ and $N^{-1}W(N^{-1})^H$ are compatible with those of Ω_1 and Ω_2.

Thus, from (9), we have
\[\begin{bmatrix} K_{11} & K_{12}S_1 & 0 & 0 \\ S_1K_{12} & S_1K_{22} + S_2J_{22}S_2 & S_2J_{23} & 0 \\ 0 & J_{23}S_2 & J_{33} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \]
\[= \begin{bmatrix} W_{11} & W_{12} & W_{13} & W_{14} \\ W_{12} & W_{22} & W_{23} & W_{24} \\ W_{13} & W_{23} & W_{33} & W_{34} \\ W_{14} & W_{24} & W_{34} & W_{44} \end{bmatrix}. \]

By (13), we can get
\[W_{ij} = 0, \quad W_{ij} = 0, \quad i = 1, 2, 3, 4, \]
\[K_{11} = W_{11}, \quad K_{12}S_1 = W_{12}, \]
\[S_1K_{22} + S_2J_{22}S_2 = W_{22}, \]
\[J_{33} = W_{33}, \quad S_2J_{23} = W_{23}. \]

In summary of above discussion, we can easily obtain the following result.

Theorem 1: Suppose that
\[A_1 \in \mathbb{C}^{n_1 \times m_1}, \quad C_1 \in \mathbb{C}^{m_1 \times n_1}, \]
\[A_2, \quad C_2 \in \mathbb{C}^{n_2 \times p_2}, \quad B_2, \quad D_2 \in \mathbb{C}^{p_2 \times b_2}, \]
\[A_3, \quad C_3 \in \mathbb{C}^{m_3 \times b_3}, \quad B_3, \quad D_3 \in \mathbb{C}^{q_3 \times b_3}, \]
\[A_4 \in \mathbb{C}^{n \times m}, \quad B_4 \in \mathbb{C}^{n \times p}, \quad C_4 \in \mathbb{C}^{n \times q} \]
and
\[D_4 = D_4^H \in \mathbb{C}^{n \times n}. \]

Let
\[A^H = [A_2^H, B_2]^H, \quad B^H = [C_2^H, D_2]^H, \]
\[C^H = [A_3^H, B_3]^H, \quad D^H = [C_3^H, D_3]^H, \]
\[M_1 = A_1F_1A, \quad M_2 = B_4FA, \quad M_3 = C_4FC, \]
\[W_{11} = D_4 - A_1A_1^HC_1 - (A_4^AH_1^C)D - B_4A_B^BB_4^H \]
\[- B_4FA(B_4A_B^B)^H - C_4C^D + C_4F_C(C_4C^D)^H, \]
\[G_1 = E_{M_1}M_2, \quad G_2 = E_{M_1}M_3, \quad W = E_{M_1}W_1E_{M_1}, \]
the GSVD of (G_1, G_2) be given by (2) and $N^{-1}W(N^{-1})^H = [W_{ij}]_{4 \times 4}$ be given by (12). Then the equation of (1) has a solution (X, Y, Z) if and only if
\[A_1A_1^HC_1 = C_1, \quad AA^+B = B, \quad AB^H = BA^H, \]
\[CC^+D = D, \quad CD^H = DC^H, \]
\[W_{ij} = 0, \quad W_{ij} = 0, \quad i = 1, 2, 3, 4, \]
in which case, the general solution can be expressed as
\[X = A_1^HC_1 + FA, L, \quad Y = A^+B + FA(A^+B)^H + FAKF_A, \]
\[Z = C^+D + FC(C^+D)^H + FCJF_C, \]
where \(L \) is given by (8) with
\[
\bar{D} = W_1 - M_2KMM^\top - M_3JMM^\top ,
\]
and
\[
K = P \begin{bmatrix} W_{11} & W_{12}S_{11}^{-1} & K_{13} \\ S_{11}^\top W_{12} & S_{11}^\top S_{11}^{-1}(W_{22} - S_2S_2S_2)S_{11}^{-1} & K_{23} \\ K_{13}^\top & K_{23}^\top & K_{33} \end{bmatrix} P^H ,
\]
\[
J = Q \begin{bmatrix} J_{11} & J_{12} & J_{13} \\ J_{21}^\top & J_{22} & J_{23}^\top \\ J_{31}^\top & J_{32}^\top & J_{33}^\top W_{23}S_{22}^{-1} & W_{33} \end{bmatrix} Q^H ,
\]
and
\[
U, K_{13}, K_{23}, K_{33} = K_{33}^H, J_{11} = J_{11}^H, J_{22} = J_{22}^H, J_{12}, J_{13}
\]
are all arbitrary matrices.

References

[27] J. K. Baksalary, Nonnegative definite and positive definite solutions to the matrix equation \(AXA^* = B \), Linear Multilinear Algebra, 16 (1984) 133–139.

