WASET
	%0 Journal Article
	%A Raphael de Oliveira Garcia and  Samuel Rocha de Oliveira
	%D 2015
	%J International Journal of Mathematical and Computational Sciences
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 97, 2015
	%T Central Finite Volume Methods Applied in Relativistic Magnetohydrodynamics: Applications in Disks and Jets
	%U https://publications.waset.org/pdf/10000315
	%V 97
	%X We have developed a new computer program in
Fortran 90, in order to obtain numerical solutions of a system
of Relativistic Magnetohydrodynamics partial differential equations
with predetermined gravitation (GRMHD), capable of simulating
the formation of relativistic jets from the accretion disk of matter
up to his ejection. Initially we carried out a study on numerical
methods of unidimensional Finite Volume, namely Lax-Friedrichs,
Lax-Wendroff, Nessyahu-Tadmor method and Godunov methods
dependent on Riemann problems, applied to equations Euler in
order to verify their main features and make comparisons among
those methods. It was then implemented the method of Finite
Volume Centered of Nessyahu-Tadmor, a numerical schemes that
has a formulation free and without dimensional separation of
Riemann problem solvers, even in two or more spatial dimensions,
at this point, already applied in equations GRMHD. Finally, the
Nessyahu-Tadmor method was possible to obtain stable numerical
solutions - without spurious oscillations or excessive dissipation -
from the magnetized accretion disk process in rotation with respect
to a central black hole (BH) Schwarzschild and immersed in a
magnetosphere, for the ejection of matter in the form of jet over a
distance of fourteen times the radius of the BH, a record in terms
of astrophysical simulation of this kind. Also in our simulations,
we managed to get substructures jets. A great advantage obtained
was that, with the our code, we got simulate GRMHD equations in
a simple personal computer.

	%P 48 - 58