
 

 

 
Abstract—At present, the evaluation of voltage stability 

assessment experiences sizeable anxiety in the safe operation of 
power systems. This is due to the complications of a strain power 
system. With the snowballing of power demand by the consumers 
and also the restricted amount of power sources, therefore, the system 
has to perform at its maximum proficiency. Consequently, the 
noteworthy to discover the maximum ability boundary prior to 
voltage collapse should be undertaken. A preliminary warning can be 
perceived to evade the interruption of power system’s capacity. The 
effectiveness of line voltage stability indices (LVSI) is differentiated 
in this paper. The main purpose of the indices used is to predict the 
proximity of voltage instability of the electric power system. On the 
other hand, the indices are also able to decide the weakest load buses 
which are close to voltage collapse in the power system. The line 
stability indices are assessed using the IEEE 14 bus test system to 
validate its practicability. Results demonstrated that the implemented 
indices are practically relevant in predicting the manifestation of 
voltage collapse in the system. Therefore, essential actions can be 
taken to dodge the incident from arising. 
 

Keywords—Critical line, line outage, line voltage stability 
indices (LVSI), maximum loadability, voltage collapse, voltage 
instability, voltage stability analysis.  

I. INTRODUCTION 

SSENTIALLY, voltage instability is a non-linear 
phenomenon. The instability is demonstrated when the 

network is being fully utilized up until it crosses the maximum 
deliverable power limits. The main motivations for 
transmission network improvements and enlargements are 
dependable considerations and interconnection of new 
generation resources. Despite that, some economic criteria and 
environmental consideration should be taken into account and 
hence will cause the planning to be postponed [1]. Moreover, 
the rapid increasing of implementation of renewable energy is 
prone to cause the transmission network to be more 
complicated and stressed, since these sources have a higher 
and random behavior. 

 
H. H. Goh, Q. S. Chua, S. W. Lee and B. C. Kok are with the Department 

of Electrical Power Engineering, Faculty of Electrical and Electronic 
Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu 
Pahat, Johor, Malaysia (corresponding author phone: +60(167416824); e-
mail: hhgoh@uthm.edu.my).  

K. C. Goh is with the Department of Construction Managment, Faculty of 
Technology Management and Business, Universiti Tun Hussein Onn 
Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia. 

K. T. K. Teo is with the Modelling, Simulation and Computing Laboratory, 
Level 3, Block C, School of Engineering and Information Technology, Jalan 
UMS, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia. 

Present-day, a number of blackouts interconnected to the 
voltage stability issue have happened in several countries. The 
greatest quantities of major blackouts took place in the year 
2003. The United States (U.S.)-Canadian blackout took place 
on August 14, 2003. During the blackout, an estimated value 
of 50 million people was affected in eight U.S. states and two 
Canadian provinces. Approximately, 63 GW of load was 
interrupted, which equals to 11 % of the total serving load in 
the Eastern Interconnection of the North American system. 
According to the reports, more than 400 transmission lines and 
531 generating units at 261 power plants tripped [2], [3]. 
Subsequently, on September 23, 2003, a major blackout took 
place in Southern Sweden and Eastern Denmark and has an 
impact on 2.4 million customers [3], [4]. Five days later on 
September 28, 2003, some other major blackout began when a 
tree flash over caused the tripping of a major tie-line between 
Italy and Switzerland [5], [6]. 

The total number of power systems outages throughout the 
world is illustrated in Fig. 1. It shows a significant growth for 
the power systems outages during the last decade. Besides 
that, it also shows the trend still expanding. 

 

 

Fig. 1 Total number of worldwide power systems outages (until 
February 2014) 

 
Voltage stability assessment and control are not considered 

as any new issue [7], but they have now attained special 
attentions to maintain the stability of the transmission 
networks in order to avoid recurrence of major blackouts as 
experienced by the particular countries. The power system can 
be classified in the voltage stability region if it can maintain 
steady acceptable voltages at all buses in the system under 
normal operating conditions and after being subjected to a 
disturbance [8], [9]. In order to be reliable, the power system 
must be stable most of the time. The study on voltage stability 
can be break down into various approaches, but the estimation 
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where: Vs and Vr are the sending end and receiving end 
voltages respectively; s and r are the phase angle at the 

sending and receiving buses;  
 

r s     
 

Z is the line impedance; R is the line resistance; X is the line 

reactance;  is the line impedance angle; Pr is the active 
power at the receiving end; Qr is the reactive power at the 
receiving end. 

Lines that present values of Lmn close to 1, indicates that 
those lines are closer to their instability points. In order to 
maintain a secure condition for the power systems, the Lmn 
index should be maintained less than 1. 

B. Fast Voltage Stability Index (FVSI) 

The fast voltage stability index, FVSI proposed in reference 
number [19] is based on a concept of power flow through a 
single line. For the interconnected transmission line, the 
stability index is calculated by (2). 

 
2

2

. .4

.

j
ij

i

QZ
FVSI

XV

                                   (2) 

where: Z is the line impedance; X is the line reactance; Qj is 
the reactive power flow at the receiving end; Vi is the sending 
end voltage. 

The line that exhibits FVSI closed to 1 indicates that it is 
approaching its instability point. If FVSI goes beyond 1 or 
unity, one of the buses that connected to the line will 
experience a sudden voltage drop leading to system collapse. 

Besides that, the calculated FVSI can also be used to 
identify the weakest bus on the system [29]. The most exposed 
bus in the system corresponds to the bus with the smallest 
maximum permissible load. 

C. Line Stability Factor (LQP) 

The LQP index in (3) is derived by A. Mohamed et al. and 
is obtained using the same theory as (1) and (2). 

 

2

2 24
ji

i i

X XLQP QP
V V

   
          
   

                     (3) 

where: X is the line reactance; Pi is the active power flow at 
the sending bus; Qj is the reactive power flow at the receiving 
bus; Vi is the voltage on sending bus. 

In order to maintain a secure condition, the value of LQP 
index must be maintained less than 1. 

D. Voltage Collapse Point Indicators (VCPI) 

The voltage collapse point indicators (VCPI) proposed in 
reference number [23] are based on the concept of maximum 
power transferred through a line. 

 

r
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The denominator is the maximum power that can be 
transferred to the receiving end.  Hence, the maximum power 
at the receiving end can be calculated by using (6) and (7) 
subsequently. 
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With the increasing power flow transferred by transmission 

lines, the values of VCPI (power) and VCPI (losses) increase 
slowly, and when the indices reach 1, the voltage collapse 
occurs. The value of VCPI varies from 0 (no-load condition) 
to 1 (voltage collapse). 

E. IEEE 14 Bus System 

In order to validate the effectiveness of the line stability 
indices, a study has been made in IEEE 14 bus system. Hence, 
the critical system nodes and transmission branches can be 
identified easily. 

The calculations for the stability indices for each line were 
developed by using the Matlab program with the integration of 
the data provided by PowerWorld. 

Basically, the IEEE 14 bus test system has 5 generators, 11 
loads and 20 interconnected branches. The one-line diagram 
for IEEE 14 bus system is illustrated in Fig. 3. 

 
TABLE I 

LINE STABILITY INDICES FOR IEEE 14 BUS TEST SYSTEM WITH BASE CASE 

LOADING 

Load 
(p.u.) 

Line Lmn FVSI LQP VCPI(P) VCPI(L) 

Q10 
=0.058 

9-10 0.015 0.014 0.013 0.020 0.020 

10-11 0.013 0.013 0.011 0.026 0.026 

Q11 
=0.018 

6-11 0.030 0.029 0.024 0.055 0.055 

10-11 0.013 0.013 0.012 0.027 0.027 

Q14 
=0.050 

9-14 0.041 0.040 0.035 0.090 0.090 

13-14 0.026 0.026 0.022 0.068 0.068 
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Fig. 3 IEEE 14 bus test network 

IV. RESULT AND DISCUSSION 

A test was conducted on the IEEE 14 bus test system. Three 
load buses were randomly chosen in order to investigate the 
effect of reactive power loading on the 5 indices as mentioned 
in Section III. Reactive loads at buses 10, 11 and 14 were 
gradually increased from the based case up until their 
maximum allowable load or maximum loadability which is the 
maximum load that could be injected to a load bus before the 
power flow solution diverges. 

Lmn index, FVSI index, LQP index, VCPI (power) and 
VCPI (losses) indices were performed for each line in the 
system for every load increase. The line with the greatest 
index with respect to a load increase will be considered as the 
most critical line. Any further increment of the load will lead 
the line to have indices greater than 1.00 and caused the whole 
system to be unstable. 

Table I showed the consensus between the different line 
stability indices. According to Table I, different voltage 
stability indices have been calculated for the system under 
base case loading and their values are presented in Table I. 
The first column is of the table shows the initial reactive load 
value for the particular bus. In the meanwhile, the second 
column shows the lines connected between sending end and 
receiving end nodes. The line voltage stability indices values 
are presented in column 3 to column 7 in accordance. 

Fig. 4 shows the critical lines of the IEEE 14 bus test 
system for the line stability index (Lmn). The individual Lmn 
curve represented in Fig. 4 is the most critical line referred to a 
bus. For example, the line that connects bus 9 to bus 10 is the 
most critical line referred to bus 10. Besides that, the line 6-11 
and line 9-14 are the most critical lines of the bus 11 and bus 
14 subsequently. 

In addition, Fig. 5 shows the critical lines of the IEEE 14 
bus test system for the fast voltage stability index (FVSI). The 
individual FVSI curve represented in Fig. 5 is the most critical 
line referred to a bus. For instant, the line that connects bus 9 
to bus 10 is the most critical line referred to bus 10. Besides 

that, the line 6-11 and line 9-14 are the most critical lines of 
the bus 11 and bus 14 subsequently. 

 

 

Fig. 4 Lmn versus reactive load variation for IEEE 14 bus test system 
 

 

Fig. 5 FVSI versus reactive load variation for IEEE 14 bus test 
system 

 
Moreover, Fig. 6 shows the critical lines of the IEEE 14 bus 

test system for the line stability factor (LQP). The individual 
LQP curve represented in Fig. 6 is the most critical line 
referred to a bus. For instant, the line that connects bus 9 to 
bus 10 is the most critical line referred to bus 10. Besides that, 
the line 6-11 and line 9-14 are the most critical lines of the bus 
11 and bus 14 subsequently. 

 

 

Fig. 6 LQP versus reactive load variation for IEEE 14 bus test system 
 
Besides that, Figs. 7 and 8 show the critical lines of the 

IEEE 14 bus test system for the voltage collapse point 
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indicators, VCPI (power) and VCPI (losses). The individual 
VCPI (power) and VCPI (losses) curves represented in Figs. 7 
and 8 are the most critical line referred to a bus. For instant, 
the line that connects bus 9 to bus 10 is the most critical line 
referred to bus 10. Besides that, the line 6-11 and line 9-14 are 
the most critical lines of the bus 11 and bus 14 subsequently. 

 

 

Fig. 7 VCPI (power) versus reactive load variation for IEEE 14 bus 
test system 

 

 

Fig. 8 VCPI (losses) versus reactive load variation for IEEE 14 bus 
test system 

 
In order to determine the weak buses of the system, the 

reactive load at each load bus is slowly varied with the level of 
voltage collapse. All the line stability indices increase as the 
reactive power loading is increased. The reactive load to the 
bus where the line stability indices are close to 1 is considered 
as maximum permissible reactive load at that particular bus. 
The results are verified by using the 5 different types of line 
voltage stability indices such as Lmn, FVSI, LQP, VCPI 
(power) and VCPI (losses). 

By referring to Table II, line 9-14 at bus 14 is the most 
critical line as the results are supported by the various types of 
line stability indices. Comparison of indices reveals that FVSI 
index is closest to 1 at the point of bifurcation. For the same 
loading, Lmn index, VCPI(P) index and VCPI(L) index show 
almost consistent results, but LQP index is found to be much 
less as compared with the other 4 indices. 

Besides that, the line 6-11 is the most critical line referred 
to bus 11 because it presents the highest indices’ values for the 
maximum loadability of the bus. Alike line 9-10 is the most 

critical line with respect to bus 10. 
 

TABLE II 
LINE STABILITY INDICES FOR IEEE 14 BUS TEST SYSTEM WITH HEAVY 

REACTIVE LOADING 

Load 
(p.u.) 

Line Lmn FVSI LQP VCPI(P) VCPI(L) 

Q10 
=0.948 

9-10 0.573 0.590 0.521 0.543 0.543 

10-11 0.571 0.588 0.501 0.543 0.542 

Q11 
=0.857 

6-11 0.781 0.831 0.684 0.734 0.734 

10-11 0.628 0.669 0.566 0.606 0.606 

Q14 
=0.7283 

9-14 0.900 0.968 0.815 0.873 0.873 

13-14 0.858 0.922 0.761 0.825 0.825 

 
In the meanwhile, the line stability indices can also be used 

to identify the weakest bus in the weakest bus in the system by 
considering the maximum permissible load at the particular 
bus. 

By referring to Fig. 9, the buses 10, 11 and 14 indicated 
94.80 MVar, 85.47 MVar and 72.83 MVar as the maximum 
permissible of reactive load respectively in IEEE 14 bus test 
system. 

 

 

Fig. 9 Maximum permissible reactive load on IEEE 14 bus test 
system 

 
Therefore, the bus 14 has the smallest maximum 

loadability; it is considered to be the most critical unstable bus 
because this bus sustains the lowest load in IEEE 14 bus test 
system. 

V. CONCLUSION 

The simulation results of IEEE 14 bus test system 
demonstrated the feasibility and effectiveness of the line 
stability indices. These indices were used to determine the 
critical line referred to a bus and at the same time revealed the 
weakest bus of a power system. The simulation results show 
that bus 14 is considered to be the weakest bus for the IEEE 
14 bus test system. Verification and comparison were 
performed by using Lmn, FVSI, LQP, VCPI (P) and VCPI 
(L). FVSI index demonstrated the value closed to 1, by 
following with Lmn index, VCPI (P), VCPI (L) and lastly is 
LQP index. Thus, these indices showed the close agreement 
and are comparable as an early-warning tool to voltage 
collapse. These indices are very useful to the power system 
operators in order to maintain the power system in stable 
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