Effect of the Accelerated Carbonation in Fibercement Composites Reinforced with Eucalyptus Pulp and Nanofibrillated Cellulose
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
Effect of the Accelerated Carbonation in Fibercement Composites Reinforced with Eucalyptus Pulp and Nanofibrillated Cellulose

Authors: Viviane C. Correia, Sergio F. Santos, Holmer Savastano Jr.

Abstract:

The main purpose of this work was verify the influence of the accelerated carbonation in the physical and mechanical properties of the hybrid composites, reinforced with micro and nanofibers and composites with microfibers. The composites were produced by the slurry vacuum dewatering method, followed by pressing. It was produced using two formulations: 8% of eucalyptus pulp + 1% of the nanofibrillated cellulose and 9% of eucalyptus pulp, both were subjected to accelerated carbonation. The results showed that the accelerated carbonation contributed to improve the physical and mechanical properties of the hybrid composites and of the composites reinforced with microfibers (eucalyptus pulp).

Keywords: Carbonation, cement composites, nanofibrillated cellulose.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1337769

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2688

References:


[1] Z. S. Metaxa, M. S. Konsta-Gdoutos, S. P. Shah, “Carbon nanofiber cementitious composites: Effect of debulking procedure on dispersion and reinforcing efficiency,” Cem. Concr. Compos, vol. 36, pp. 25-32, 2013.
[2] G. Y. Li, P. M. Wang, X. Zhao, “Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes,” Carbon, vol. 43, pp. 1239-1245, 2005.
[3] R. D. Toledo Filho, K. Ghavami, M. Sanjuán, G. England, “Free restrained and drying shrinkage of cement mortar composites reinforced with vegetable fibres,” Cem. Concr. Compos, vol. 27, pp. 537-546, 2005.
[4] F. Glasser, J. Marchand, E. Samson, “Durability of concrete. Degradation phenomena involving detrimental chemical reactions,” Cem. Concr. Res., vol. 38, pp. 226-246, 2008.
[5] A. Bentur, D. Mitchell, “Material performance lessons,” Cem. Concr. Res., vol. 38, pp. 259-272, 2008.
[6] G. Yakovlev, J. Kerienė, A. Gailius, I. Girniene, “Cement based foam concrete reinforced by carbon nanotubes,” Mater. Sci., vol. 12, no. 2,pp. 147-151, 2006.
[7] M. S. Konsta-Gdoutos, Z. S. Metaxa, S. P. Shah, “Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites,” Cem. Concr. Compos., vol. 32, pp. 110-115, 2010.
[8] J. Claramunt, M. Ardanuy, J. A. García-Hortal, R. D. Toledo Filho, “The hornification of vegetable fibers to improve the durability of cement mortar composites,” Cem. Concr. Compos., vol. 33, pp. 586-595, 2011.
[9] M. Khorami, E. Ganjian, “Comparing flexural behavior of fibre-cement composites reinforced bagasse: Wheat and eucalyptus,” Constr. Build. Mater., vol. 25, pp. 3661-3667, 2011.
[10] R. D. Toledo Filho, G. L. England, K. Ghavami, K. Scrivener, “Development of vegetable fibre-mortar composites of improved durability,” Cem. Concr. Compos., vol. 25, pp. 185-196, 2003.
[11] M. Lesti, C. Tiemeyer, J. PLANK, “CO2 stability of Portland cement based well cementing systems for use on carbon capture & storage (CCS) wells,” Cem. Concr. Res., vol. 45, pp. 45-54, 2013.
[12] S. A. S. Akers, J. B. Studinka, “Ageing behavior of cellulose fiber cement composites in natural weathering and accelerated tests,” Int. J. Cem. Compos. Lightweight Concr., vol. 11, no. 2, pp. 93-97, 1989.
[13] R. Macvicar, L. M. Matuana, J. J. Balatinecz, “Aging mechanism in celulose fiber reinforced cement composites,” Cem. Concr. Compos., vol. 21, pp. 189-196, 1999.
[14] ASTM C150/C150M-11. Standard. Standard Specification for Portland Cement; 2011.
[15] H. Savastano Jr., P. G. Warden, R. S. P. Coutts, “Brazilian waste fibres as reinforcement for cement-based composites,” Cem. Concr. Compos., vol. 22, pp. 379-384, 2000.
[16] ASTM C 948-81. Standard. Dry and wet bulk density, water absorption and apparent porosity of thin sections of glass-fiber reinforced concrete; 2009.
[17] A. E. F. S. Almeida, G. H. D. Tonoli, S. F. Santos, H. Savastano Jr., “Improved durability of vegetable fiber reinforced cement composite subject to accelerated carbonation at early age,” Cem. Concr. Compos., vol. 42, pp. 49-58, 2013.
[18] G. H. D. Tonoli, S. F. Santos, A. P. Joaquim, H. Savastano Jr., “Effect of accelerated carbonation on cementitious roofing tiles reinforced with lignocellulosic fiber,” Constr. Build. Mater., vol. 24, pp. 193-201, 2010.
[19] B. M. Fernández, A. Muntean, S. J. R. Simons, C. D. Hills, P. J. Carey, “A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2,” J. Hazard. Mater., vol. 112, no. 30, pp. 193-205, 2004.