Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

voltage improvement Related Publications

2 Optimal Placement and Sizing of Distributed Generation in Microgrid for Power Loss Reduction and Voltage Profile Improvement

Authors: Ferinar Moaidi, Mahdi Moaidi

Abstract:

Environmental issues and the ever-increasing in demand of electrical energy make it necessary to have distributed generation (DG) resources in the power system. In this research, in order to realize the goals of reducing losses and improving the voltage profile in a microgrid, the allocation and sizing of DGs have been used. The proposed Genetic Algorithm (GA) is described from the array of artificial intelligence methods for solving the problem. The algorithm is implemented on the IEEE 33 buses network. This study is presented in two scenarios, primarily to illustrate the effect of location and determination of DGs has been done to reduce losses and improve the voltage profile. On the other hand, decisions made with the one-level assumptions of load are not universally accepted for all levels of load. Therefore, in this study, load modelling is performed and the results are presented for multi-levels load state.

Keywords: Distributed Generation, Microgrid, Genetic Algorithm, loss reduction, load modelling, voltage improvement

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 433
1 SVC and DSTATCOM Comparison for Voltage Improvement in RDS Using ANFIS

Authors: U. Ramesh Babu, S. Tara Kalyani, V. Vijaya Kumar Reddy

Abstract:

This paper investigates the performance comparison of SVC (Static VAR Compensator) and DSTATCOM (Distribution Static Synchronous Compensator) to improve voltage stability in Radial Distribution System (RDS) which are efficient FACTS (Flexible AC Transmission System) devices that are capable of controlling the active and reactive power flows in a power system line by appropriately controlling parameters using ANFIS. Simulations are carried out in MATLAB/Simulink environment for the IEEE-4 bus system to test the ability of increasing load. It is found that these controllers significantly increase the margin of load in the power systems.

Keywords: ANFIS, SVC, DSTATCOM, voltage improvement

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 906