Ali Ghaffari


3 A Recommendation to Oncologists for Cancer Treatment by Immunotherapy: Quantitative and Qualitative Analysis

Authors: Ali Ghaffari, Mandana Kariminejad


Today, the treatment of cancer, in a relatively short period, with minimum adverse effects is a great concern for oncologists. In this paper, based on a recently used mathematical model for cancer, a guideline has been proposed for the amount and duration of drug doses for cancer treatment by immunotherapy. Dynamically speaking, the mathematical ordinary differential equation (ODE) model of cancer has different equilibrium points; one of them is unstable, which is called the no tumor equilibrium point. In this paper, based on the number of tumor cells an intelligent soft computing controller (a combination of fuzzy logic controller and genetic algorithm), decides regarding the amount and duration of drug doses, to eliminate the tumor cells and stabilize the unstable point in a relatively short time. Two different immunotherapy approaches; active and adoptive, have been studied and presented. It is shown that the rate of decay of tumor cells is faster and the doses of drug are lower in comparison with the result of some other literatures. It is also shown that the period of treatment and the doses of drug in adoptive immunotherapy are significantly less than the active method. A recommendation to oncologists has also been presented.

Keywords: Tumor, Immunotherapy, fuzzy controller, mathematical model, genetic algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 467
2 Adaptive Fuzzy Control for Air-Fuel Ratio of Automobile Spark Ignition Engine

Authors: Ehsan Kamrani, Ali Ghaffari, A. Hosein Shamekhi, Akbar Saki


In order to meet the limits imposed on automotive emissions, engine control systems are required to constrain air/fuel ratio (AFR) in a narrow band around the stoichiometric value, due to the strong decay of catalyst efficiency in case of rich or lean mixture. This paper presents a model of a sample spark ignition engine and demonstrates Simulink-s capabilities to model an internal combustion engine from the throttle to the crankshaft output. We used welldefined physical principles supplemented, where appropriate, with empirical relationships that describe the system-s dynamic behavior without introducing unnecessary complexity. We also presents a PID tuning method that uses an adaptive fuzzy system to model the relationship between the controller gains and the target output response, with the response specification set by desired percent overshoot and settling time. The adaptive fuzzy based input-output model is then used to tune on-line the PID gains for different response specifications. Experimental results demonstrate that better performance can be achieved with adaptive fuzzy tuning relative to similar alternative control strategies. The actual response specifications with adaptive fuzzy matched the desired response specifications.

Keywords: Modelling, Adaptive Fuzzy Control, SI engine, Air–fuel ratio control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147
1 Turbine Follower Control Strategy Design Based on Developed FFPP Model

Authors: Ali Ghaffari, Mansour Nikkhah Bahrami, Hesam Parsa


In this paper a comprehensive model of a fossil fueled power plant (FFPP) is developed in order to evaluate the performance of a newly designed turbine follower controller. Considering the drawbacks of previous works, an overall model is developed to minimize the error between each subsystem model output and the experimental data obtained at the actual power plant. The developed model is organized in two main subsystems namely; Boiler and Turbine. Considering each FFPP subsystem characteristics, different modeling approaches are developed. For economizer, evaporator, superheater and reheater, first order models are determined based on principles of mass and energy conservation. Simulations verify the accuracy of the developed models. Due to the nonlinear characteristics of attemperator, a new model, based on a genetic-fuzzy systems utilizing Pittsburgh approach is developed showing a promising performance vis-à-vis those derived with other methods like ANFIS. The optimization constraints are handled utilizing penalty functions. The effect of increasing the number of rules and membership functions on the performance of the proposed model is also studied and evaluated. The turbine model is developed based on the equation of adiabatic expansion. Parameters of all evaluated models are tuned by means of evolutionary algorithms. Based on the developed model a fuzzy PI controller is developed. It is then successfully implemented in the turbine follower control strategy of the plant. In this control strategy instead of keeping control parameters constant, they are adjusted on-line with regard to the error and the error rate. It is shown that the response of the system improves significantly. It is also shown that fuel consumption decreases considerably.

Keywords: Fuzzy set theory, Evolutionary Algorithms, gain scheduling, Attemperator, Fossil fuelled power plant (FFPP)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456