Dina L. DiSantis

Abstracts

3 Education for Sustainability: Implementing a Place-Based Watershed Science Course for High School Students

Authors: Dina L. DiSantis

Abstract:

Development and implementation of a place-based watershed science course for high school students will prove to be a valuable experience for both student and teacher. By having students study and assess the watershed dynamics of a local stream, they will better understand how human activities affect this valuable resource. It is important that students gain tangible skills that will help them to have an understanding of water quality analysis and the importance of preserving our Earth's water systems. Having students participate in real world practices is the optimal learning environment and can offer students a genuine learning experience, by cultivating a knowledge of place, while promoting education for sustainability. Additionally, developing a watershed science course for high school students will give them a hands-on approach to studying science; which is both beneficial and more satisfying to students. When students conduct their own research, collect and analyze data, they will be intimately involved in addressing water quality issues and solving critical water quality problems. By providing students with activities that take place outside the confines of the indoor classroom, you give them the opportunity to gain an appreciation of the natural world. Placed-based learning provides students with problem-solving skills in everyday situations while enhancing skills of inquiry. An overview of a place-based watershed science course and its impact on student learning will be presented.

Keywords: Water Quality, Watershed science, education for sustainability, place-based learning

Procedia PDF Downloads 37
2 Raising Awareness of Education for Sustainable Development Oriented School Programs and Curriculum

Authors: Dina L. DiSantis

Abstract:

The Japan-U.S. Teacher Exchange Program for Education for Sustainable Development (ESD) provides an opportunity for teachers from the United States and Japan to travel to each other’s countries in order to experience and learn how each country is implementing efforts to educate for sustainability. By offering programs such as the Japan-U.S. Teacher Exchange Program for Education for Sustainable Development (ESD); teachers from both countries become more aware of what ESD school programs and curricula are being implemented in both countries. Teachers gain a greater sense of global interconnectedness when they are given the opportunity to share in each other’s culture and life. The primary objectives of the program are to foster a mutual exchange between the teachers in the United States and Japan, to increase an understanding of culture and educational systems, to give teachers opportunities to collaborate on lessons and projects in areas of sustainability and to enhance professional development opportunities for both U.S and Japanese teachers. The two areas of focus for teachers, are food education and environmental education. Teachers from both countries collaborate and design curriculum and projects for their students in order to help them become more aware of the importance of global sustainability. An overview of the program and the results of an international collaborative project, encouraging local eating and forging a cultural connection to food will be presented.

Keywords: Environmental education, International collaboration, Education for Sustainable Development, food education

Procedia PDF Downloads 45
1 The Results of Longitudinal Water Quality Monitoring of the Brandywine River, Chester County, Pennsylvania by High School Students

Authors: Dina L. DiSantis

Abstract:

Strengthening a sense of responsibility while relating global sustainability concepts such as water quality and pollution to a local water system can be achieved by teaching students to conduct and interpret water quality monitoring tests. When students conduct their own research, they become better stewards of the environment. Providing outdoor learning and place-based opportunities for students helps connect them to the natural world. By conducting stream studies and collecting data, students are able to better understand how the natural environment is a place where everything is connected. Students have been collecting physical, chemical and biological data along the West and East Branches of the Brandywine River, in Pennsylvania for over ten years. The stream studies are part of the advanced placement environmental science and aquatic science courses that are offered as electives to juniors and seniors at the Downingtown High School West Campus in Downingtown, Pennsylvania. Physical data collected includes: temperature, turbidity, width, depth, velocity, and volume of flow or discharge. The chemical tests conducted are: dissolved oxygen, carbon dioxide, pH, nitrates, alkalinity and phosphates. Macroinvertebrates are collected with a kick net, identified and then released. Students collect the data from several locations while traveling by canoe. In the classroom, students prepare a water quality data analysis and interpretation report based on their collected data. The summary of the results from longitudinal water quality data collection by students, as well as the strengths and weaknesses of student data collection will be presented.

Keywords: Sustainability, Water Quality Monitoring, place-based, student data collection

Procedia PDF Downloads 32