M. H. Fazel Zarandi

Publications

2 From Type-I to Type-II Fuzzy System Modeling for Diagnosis of Hepatitis

Authors: M. H. Fazel Zarandi, Shahabeddin Sotudian, I. B. Turksen

Abstract:

Hepatitis is one of the most common and dangerous diseases that affects humankind, and exposes millions of people to serious health risks every year. Diagnosis of Hepatitis has always been a challenge for physicians. This paper presents an effective method for diagnosis of hepatitis based on interval Type-II fuzzy. This proposed system includes three steps: pre-processing (feature selection), Type-I and Type-II fuzzy classification, and system evaluation. KNN-FD feature selection is used as the preprocessing step in order to exclude irrelevant features and to improve classification performance and efficiency in generating the classification model. In the fuzzy classification step, an “indirect approach” is used for fuzzy system modeling by implementing the exponential compactness and separation index for determining the number of rules in the fuzzy clustering approach. Therefore, we first proposed a Type-I fuzzy system that had an accuracy of approximately 90.9%. In the proposed system, the process of diagnosis faces vagueness and uncertainty in the final decision. Thus, the imprecise knowledge was managed by using interval Type-II fuzzy logic. The results that were obtained show that interval Type-II fuzzy has the ability to diagnose hepatitis with an average accuracy of 93.94%. The classification accuracy obtained is the highest one reached thus far. The aforementioned rate of accuracy demonstrates that the Type-II fuzzy system has a better performance in comparison to Type-I and indicates a higher capability of Type-II fuzzy system for modeling uncertainty.

Keywords: Feature selection, Medical Diagnosis, hepatitis disease, type-I fuzzy logic, type-II fuzzy logic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1126
1 A New Fuzzy DSS/ES for Stock Portfolio Selection using Technical and Fundamental Approaches in Parallel

Authors: H. Zarei, M. H. Fazel Zarandi, M. Karbasian

Abstract:

A Decision Support System/Expert System for stock portfolio selection presented where at first step, both technical and fundamental data used to estimate technical and fundamental return and risk (1st phase); Then, the estimated values are aggregated with the investor preferences (2nd phase) to produce convenient stock portfolio. In the 1st phase, there are two expert systems, each of which is responsible for technical or fundamental estimation. In the technical expert system, for each stock, twenty seven candidates are identified and with using rough sets-based clustering method (RC) the effective variables have been selected. Next, for each stock two fuzzy rulebases are developed with fuzzy C-Mean method and Takai-Sugeno- Kang (TSK) approach; one for return estimation and the other for risk. Thereafter, the parameters of the rule-bases are tuned with backpropagation method. In parallel, for fundamental expert systems, fuzzy rule-bases have been identified in the form of “IF-THEN" rules through brainstorming with the stock market experts and the input data have been derived from financial statements; as a result two fuzzy rule-bases have been generated for all the stocks, one for return and the other for risk. In the 2nd phase, user preferences represented by four criteria and are obtained by questionnaire. Using an expert system, four estimated values of return and risk have been aggregated with the respective values of user preference. At last, a fuzzy rule base having four rules, treats these values and produce a ranking score for each stock which will lead to a satisfactory portfolio for the user. The stocks of six manufacturing companies and the period of 2003-2006 selected for data gathering.

Keywords: technical analysis, Stock portfolio selection, Fuzzy Rule-Base ExpertSystems, Financial Decision Support Systems, Fundamental Analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487

Abstracts

2 From Type-I to Type-II Fuzzy System Modeling for Diagnosis of Hepatitis

Authors: M. H. Fazel Zarandi, Shahabeddin Sotudian, I. B. Turksen

Abstract:

Hepatitis is one of the most common and dangerous diseases that affects humankind, and exposes millions of people to serious health risks every year. Diagnosis of Hepatitis has always been a challenge for physicians. This paper presents an effective method for diagnosis of hepatitis based on interval Type-II fuzzy. This proposed system includes three steps: pre-processing (feature selection), Type-I and Type-II fuzzy classification, and system evaluation. KNN-FD feature selection is used as the preprocessing step in order to exclude irrelevant features and to improve classification performance and efficiency in generating the classification model. In the fuzzy classification step, an “indirect approach” is used for fuzzy system modeling by implementing the exponential compactness and separation index for determining the number of rules in the fuzzy clustering approach. Therefore, we first proposed a Type-I fuzzy system that had an accuracy of approximately 90.9%. In the proposed system, the process of diagnosis faces vagueness and uncertainty in the final decision. Thus, the imprecise knowledge was managed by using interval Type-II fuzzy logic. The results that were obtained show that interval Type-II fuzzy has the ability to diagnose hepatitis with an average accuracy of 93.94%. The classification accuracy obtained is the highest one reached thus far. The aforementioned rate of accuracy demonstrates that the Type-II fuzzy system has a better performance in comparison to Type-I and indicates a higher capability of Type-II fuzzy system for modeling uncertainty.

Keywords: Feature selection, Medical Diagnosis, hepatitis disease, type-I fuzzy logic, type-II fuzzy logic

Procedia PDF Downloads 140
1 AM/E/c Queuing Hub Maximal Covering Location Model with Fuzzy Parameter

Authors: M. H. Fazel Zarandi, N. Moshahedi

Abstract:

The hub location problem appears in a variety of applications such as medical centers, firefighting facilities, cargo delivery systems and telecommunication network design. The location of service centers has a strong influence on the congestion at each of them, and, consequently, on the quality of service. This paper presents a fuzzy maximal hub covering location problem (FMCHLP) in which travel costs between any pair of nodes is considered as a fuzzy variable. In order to consider the quality of service, we model each hub as a queue. Arrival rate follows Poisson distribution and service rate follows Erlang distribution. In this paper, at first, a nonlinear mathematical programming model is presented. Then, we convert it to the linear one. We solved the linear model using GAMS software up to 25 nodes and for large sizes due to the complexity of hub covering location problems, and simulated annealing algorithm is developed to solve and test the model. Also, we used possibilistic c-means clustering method in order to find an initial solution.

Keywords: location, Fuzzy Modeling, possibilistic clustering, queuing

Procedia PDF Downloads 232