S. K. Fasogbon

Publications

3 Experimental Investigation into Chaotic Features of Flow Gauges in Automobile Fuel Metering System

Authors: S. K. Fasogbon

Abstract:

Chaotic system may lead to instability, extreme sensitivity and performance reduction in control systems. It is therefore important to understand the causes of such undesirable characteristics in control system especially in the automobile fuel gauges. This is because without accurate fuel gauges in automobile systems, it will be difficult if not impossible to embark on a journey whether during odd hours of the day or where fuel is difficult to obtain. To this end, this work studied the impacts of fuel tank rust and faulty component of fuel gauge system (voltage stabilizer) on the chaotic characteristics of fuel gauges. The results obtained were analyzed using Graph iSOFT package. Over the range of experiments conducted, the results obtained showed that rust effect of the fuel tank would alter the flow density, consequently the fluid pressure and ultimately the flow velocity of the fuel. The responses of the fuel gauge pointer to the faulty voltage stabilizer were erratic causing noticeable instability of gauge measurands indicated. The experiment also showed that the fuel gauge performed optimally by indicating the highest degree of accuracy when combined the effect of rust free tank and non-faulty voltage stabilizer conditions (± 6.75% measurand error) as compared to only the rust free tank situation (± 15% measurand error) and only the non-faulty voltage stabilizer condition (± 40% measurand error). The study concludes that both the fuel tank rust and the faulty voltage stabilizer gauge component have a significant effect on the sensitivity of fuel gauge and its accuracy ultimately. Also, by the reason of literature, our findings can also be said to be valid for all other fluid meters and gauges applicable in plant machineries and most hydraulic systems.

Keywords: chaotic system, degree of accuracy, measurand, sensitivity of fuel gauge

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 542
2 Thermal Analysis of Extrusion Process in Plastic Making

Authors: S. K. Fasogbon, T. M. Oladosu, O. S. Osasuyi

Abstract:

Plastic extrusion has been an important process of plastic production since 19th century. Meanwhile, in plastic extrusion process, wide variation in temperature along the extrudate usually leads to scraps formation on the side of finished products. To avoid this situation, there is a need to deeply understand temperature distribution along the extrudate in plastic extrusion process. This work developed an analytical model that predicts the temperature distribution over the billet (the polymers melt) along the extrudate during extrusion process with the limitation that the polymer in question does not cover biopolymer such as DNA. The model was solved and simulated. Results for two different plastic materials (polyvinylchloride and polycarbonate) using self-developed MATLAB code and a commercially developed software (ANSYS) were generated and ultimately compared. It was observed that there is a thermodynamic heat transfer from the entry level of the billet into the die down to the end of it. The graph plots indicate a natural exponential decay of temperature with time and along the die length, with the temperature being 413 K and 474 K for polyvinylchloride and polycarbonate respectively at the entry level and 299.3 K and 328.8 K at the exit when the temperature of the surrounding was 298 K. The extrusion model was validated by comparison of MATLAB code simulation with a commercially available ANSYS simulation and the results favourably agree. This work concludes that the developed mathematical model and the self-generated MATLAB code are reliable tools in predicting temperature distribution along the extrudate in plastic extrusion process.

Keywords: Thermal analysis, MATLAB, ANSYS, extrusion process, plastic making

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1257
1 Effects of Soybean Methyl Ester on the Performance Characteristics of Compression Ignition Engine

Authors: S. K. Fasogbon, A. A. Asere

Abstract:

Depletion and hazardous gas emissions associated with fossil fuels have caused scientists and global attention to focus on the use of “alternative, eco-friendly substitutes for use in Compression Ignition Engines. In this work, biodiesel was produced by trans-esterification of soybean obtained from a Nigerian market using Sodium Hydroxide (NaOH) as a catalyst.” After the production, the physical properties (specific gravity to kinematic viscosity and net calorific value) of the Soybean-biodiesel produced and petrol diesel obtained from a filling station in Nigeria were determined, and these properties conform to conventional standards (ASTM). A cummins-6V-92TA DDEC diesel (Compression ignition, CI) engine was run on various biodiesel-petrol diesel blends (0/100, 10/90, 20/80, 30/70 and 40/60), the B20 (blend 20/80) was found to be the most satisfactory.

Keywords: Performance, soybean, effects, compression ignition engine, methyl ester

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534

Abstracts

1 Modelling Heat Transfer Characteristics in the Pasteurization Process of Medium Long Necked Bottled Beers

Authors: S. K. Fasogbon, O. E. Oguegbu

Abstract:

Pasteurization is one of the most important steps in the preservation of beer products, which improves its shelf life by inactivating almost all the spoilage organisms present in it. However, there is no gain saying the fact that it is always difficult to determine the slowest heating zone, the temperature profile and pasteurization units inside bottled beer during pasteurization, hence there had been significant experimental and ANSYS fluent approaches on the problem. This work now developed Computational fluid dynamics model using COMSOL Multiphysics. The model was simulated to determine the slowest heating zone, temperature profile and pasteurization units inside the bottled beer during the pasteurization process. The results of the simulation were compared with the existing data in the literature. The results showed that, the location and size of the slowest heating zone is dependent on the time-temperature combination of each zone. The results also showed that the temperature profile of the bottled beer was found to be affected by the natural convection resulting from variation in density during pasteurization process and that the pasteurization unit increases with time subject to the temperature reached by the beer. Although the results of this work agreed with literatures in the aspects of slowest heating zone and temperature profiles, the results of pasteurization unit however did not agree. It was suspected that this must have been greatly affected by the bottle geometry, specific heat capacity and density of the beer in question. The work concludes that for effective pasteurization to be achieved, there is a need to optimize the spray water temperature and the time spent by the bottled product in each of the pasteurization zones.

Keywords: Heat Transfer, Modeling, temperature profile, pasteurization process, bottled beer

Procedia PDF Downloads 100