S. Mohammadi

Publications

3 Reduction of Plutonium Production in Heavy Water Research Reactor: A Feasibility Study through Neutronic Analysis Using MCNPX2.6 and CINDER90 Codes

Authors: S. Mohammadi, H. Shamoradifar, B. Teimuri, P. Parvaresh

Abstract:

One of the main characteristics of Heavy Water Moderated Reactors is their high production of plutonium. This article demonstrates the possibility of reduction of plutonium and other actinides in Heavy Water Research Reactor. Among the many ways for reducing plutonium production in a heavy water reactor, in this research, changing the fuel from natural Uranium fuel to Thorium-Uranium mixed fuel was focused. The main fissile nucleus in Thorium-Uranium fuels is U-233 which would be produced after neutron absorption by Th-232, so the Thorium-Uranium fuels have some known advantages compared to the Uranium fuels. Due to this fact, four Thorium-Uranium fuels with different compositions ratios were chosen in our simulations; a) 10% UO2-90% THO2 (enriched= 20%); b) 15% UO2-85% THO2 (enriched= 10%); c) 30% UO2-70% THO2 (enriched= 5%); d) 35% UO2-65% THO2 (enriched= 3.7%). The natural Uranium Oxide (UO2) is considered as the reference fuel, in other words all of the calculated data are compared with the related data from Uranium fuel. Neutronic parameters were calculated and used as the comparison parameters. All calculations were performed by Monte Carol (MCNPX2.6) steady state reaction rate calculation linked to a deterministic depletion calculation (CINDER90). The obtained computational data showed that Thorium-Uranium fuels with four different fissile compositions ratios can satisfy the safety and operating requirements for Heavy Water Research Reactor. Furthermore, Thorium-Uranium fuels have a very good proliferation resistance and consume less fissile material than uranium fuels at the same reactor operation time. Using mixed Thorium-Uranium fuels reduced the long-lived α emitter, high radiotoxic wastes and the radio toxicity level of spent fuel.

Keywords: Monte Carlo, minor actinides, heavy water reactor, Burn-up, proliferation resistance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 649
2 Intelligent BRT in Tehran

Authors: P. Parvizi, S. Mohammadi

Abstract:

an intelligent BRT system is necessary when communities looking for new ways to use high capacity rapid transit at a reduced cost.This paper will describe the intelligent control system that works with Datacenter. With the help of GPS system, the data center can monitor the situation of each bus and bus station. Through RFID technology, bus station and traffic light can transfer data with bus and by Wimax communication technology all of parts can talk together; data center learns all information about the location of bus, the arrival of bus in each station and the number of passengers in station and bus.Finally, the paper presents the case study of those theories in Tehran BRT.

Keywords: Intelligent Transportation, RFID, TehranBRT

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2039
1 New Multipath Node-Disjoint Routing Based on AODV Protocol

Authors: S. Mohammadi, V. Zangeneh

Abstract:

Today, node-disjoint routing becomes inessential technique in communication of packets among various nodes in networks. Meanwhile AODV (Ad Hoc On-demand Multipath Distance Vector) creates single-path route between a pair of source and destination nodes. Some researches has done so far to make multipath node-disjoint routing based on AODV protocol. But however their overhead and end-to-end delay are relatively high, while the detail of their code is not available too. This paper proposes a new approach of multipath node-disjoint routing based on AODV protocol. Then the algorithm of analytical model is presented. The extensive results of this algorithm will be presented in the next paper.

Keywords: manet, AODV, Multipath Routing, Node-disjoint, transmission delay

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2694

Abstracts

3 Reduction of Plutonium Production in Heavy Water Research Reactor: A Feasibility Study through Neutronic Analysis Using MCNPX2.6 and CINDER90 Codes

Authors: S. Mohammadi, H. Shamoradifar, B. Teimuri, P. Parvaresh

Abstract:

One of the main characteristics of Heavy Water Moderated Reactors is their high production of plutonium. This article demonstrates the possibility of reduction of plutonium and other actinides in Heavy Water Research Reactor. Among the many ways for reducing plutonium production in a heavy water reactor, in this research, changing the fuel from natural Uranium fuel to Thorium-Uranium mixed fuel was focused. The main fissile nucleus in Thorium-Uranium fuels is U-233 which would be produced after neutron absorption by Th-232, so the Thorium-Uranium fuels have some known advantages compared to the Uranium fuels. Due to this fact, four Thorium-Uranium fuels with different compositions ratios were chosen in our simulations; a) 10% UO2-90% THO2 (enriched= 20%); b) 15% UO2-85% THO2 (enriched= 10%); c) 30% UO2-70% THO2 (enriched= 5%); d) 35% UO2-65% THO2 (enriched= 3.7%). The natural Uranium Oxide (UO2) is considered as the reference fuel, in other words all of the calculated data are compared with the related data from Uranium fuel. Neutronic parameters were calculated and used as the comparison parameters. All calculations were performed by Monte Carol (MCNPX2.6) steady state reaction rate calculation linked to a deterministic depletion calculation (CINDER90). The obtained computational data showed that Thorium-Uranium fuels with four different fissile compositions ratios can satisfy the safety and operating requirements for Heavy Water Research Reactor. Furthermore, Thorium-Uranium fuels have a very good proliferation resistance and consume less fissile material than uranium fuels at the same reactor operation time. Using mixed Thorium-Uranium fuels reduced the long-lived α emitter, high radiotoxic wastes and the radio toxicity level of spent fuel.

Keywords: minor actinides, heavy water reactor, Burn up, Neutronic Calculation

Procedia PDF Downloads 116
2 Optimal Capacitor Placement in Distribution Using Cuckoo Optimization Algorithm

Authors: S. Mohammadi, Ali Ravangard

Abstract:

Shunt Capacitors have several uses in the electric power systems. They are utilized as sources of reactive power by connecting them in line-to-neutral. Electric utilities have also connected capacitors in series with long lines in order to reduce its impedance. This is particularly common in the transmission level, where the lines have length in several hundreds of kilometers. However, this post will generally discuss shunt capacitors. In distribution systems, shunt capacitors are used to reduce power losses, to improve voltage profile, and to increase the maximum flow through cables and transformers. This paper presents a new method to determine the optimal locations and economical sizing of fixed and/or switched shunt capacitors with a view to power losses reduction and voltage stability enhancement. For solving the problem, a new enhanced cuckoo optimization algorithm is presented.The proposed method is tested on distribution test system and the results show that the algorithm suitable for practical implementation on real systems with any size.

Keywords: Voltage Stability, capacitor placement, power losses, radial distribution systems

Procedia PDF Downloads 254
1 Consideration of Uncertainty in Engineering

Authors: S. Mohammadi, A. Mohammadi, M. Moghimi

Abstract:

Engineers need computational methods which could provide solutions less sensitive to the environmental effects, so the techniques should be used which take the uncertainty to account to control and minimize the risk associated with design and operation. In order to consider uncertainty in engineering problem, the optimization problem should be solved for a suitable range of the each uncertain input variable instead of just one estimated point. Using deterministic optimization problem, a large computational burden is required to consider every possible and probable combination of uncertain input variables. Several methods have been reported in the literature to deal with problems under uncertainty. In this paper, different methods presented and analyzed.

Keywords: Stochastic Programming, Uncertainty, Monte Carlo simulated, scenario method

Procedia PDF Downloads 252