Yi-Fang Pan

Publications

1 Building a Trend Based Segmentation Method with SVR Model for Stock Turning Detection

Authors: Jheng-Long Wu, Pei-Chann Chang, Yi-Fang Pan

Abstract:

This research focus on developing a new segmentation method for improving forecasting model which is call trend based segmentation method (TBSM). Generally, the piece-wise linear representation (PLR) can finds some of pair of trading points is well for time series data, but in the complicated stock environment it is not well for stock forecasting because of the stock has more trends of trading. If we consider the trends of trading in stock price for the trading signal which it will improve the precision of forecasting model. Therefore, a TBSM with SVR model used to detect the trading points for various stocks of Taiwanese and America under different trend tendencies. The experimental results show our trading system is more profitable and can be implemented in real time of stock market

Keywords: stock forecasting, Support Vector Machine, Trend based segmentation method, turning detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2702