Prof. Dr. M. S. Dharmaprakash

Committee: International Scientific Committee of Materials and Metallurgical Engineering
University: Businayana Mukundadas Sreenivasaiah College of Engineering
Department: Department of Chemistry
Research Fields: nanoparticles, XRD, TEM, photoluminescence,

Publications

1 Eu+3 Ion as a Luminescent Probe in ZrO2: Gd+3 Co-Doped Nanophosphor

Authors: M. S. Dharmaprakash, S. Manjunatha

Abstract:

Well-defined 2D Eu+3 co-doped ZrO2: Gd+3 nanoparticles were successfully synthesized by microwave assisted solution combustion technique for luminescent applications. The present investigation reports the rapid and effective method for the synthesis of the Eu+3 co-doped ZrO2:Gd+3 nanoparticles and study of the luminescence behavior of Eu+3 ion in ZrO2:Gd+3 nanostructures. The optical properties of the prepared nanostructures were investigated by using UV-visible spectroscopy and photoluminescence spectra. The phase formation and the morphology of the nanoplatelets were studied by XRD, FESEM and HRTEM. The average grain size was found to be 45-50 nm. The presence of Gd3+ ion increases the crystallinity of the material and hence acts as a good nucleating agent. The ZrO2:Gd3+ co-doped with Eu+3 nanoplatelets gives an emission at 607 nm, a strong red emission under the excitation wavelength of 255 nm.

Keywords: Nanoparticles, Photoluminescence, XRD, TEM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 747

Abstracts

1 Eu+3 Ion as a Luminescent Probe in ZrO2: Gd+3 Co-Doped Nanophosphor

Authors: M. S. Dharmaprakash, S. Manjunatha

Abstract:

Well-defined 2D Eu+3 co-doped ZrO2: Gd+3 nanoparticles were successfully synthesized by microwave assisted solution combustion technique for luminescent applications. The present investigation reports the rapid and effective method for the synthesis of the Eu+3 co-doped ZrO2:Gd+3 nanoparticles and study of the luminescence behavior of Eu+3 ion in ZrO2:Gd+3 nanostructures. The optical properties of the prepared nanostructures were investigated by using UV-visible spectroscopy and photoluminescence spectra. The phase formation and the morphology of the nanoplatelets were studied by XRD, FESEM and HRTEM. The average grain size was found to be 45-50 nm. The presence of Gd3+ ion increases the crystallinity of the material and hence acts as a good nucleating agent. The ZrO2:Gd3+ co-doped with Eu+3 nanoplatelets gives an emission at 607 nm, a strong red emission under the excitation wavelength of 255 nm.

Keywords: Nanoparticles, Photoluminescence, XRD, TEM

Procedia PDF Downloads 182