T. H. Lee


2 Nonlinear Model Predictive Control for Solid Oxide Fuel Cell System Based On Wiener Model

Authors: S. C. Lee, J. H. Park, T. H. Lee, S. M. Lee


In this paper, we consider Wiener nonlinear model for solid oxide fuel cell (SOFC). The Wiener model of the SOFC consists of a linear dynamic block and a static output non-linearity followed by the block, in which linear part is approximated by state-space model and the nonlinear part is identified by a polynomial form. To control the SOFC system, we have to consider various view points such as operating conditions, another constraint conditions, change of load current and so on. A change of load current is the significant one of these for good performance of the SOFC system. In order to keep the constant stack terminal voltage by changing load current, the nonlinear model predictive control (MPC) is proposed in this paper. After primary control method is designed to guarantee the fuel utilization as a proper constant, a nonlinear model predictive control based on the Wiener model is developed to control the stack terminal voltage of the SOFC system. Simulation results verify the possibility of the proposed Wiener model and MPC method to control of SOFC system.

Keywords: Model Predictive Control, SOFC, Wiener model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
1 Synchronization Between Two Chaotic Systems: Numerical and Circuit Simulation

Authors: J. H. Park, T. H. Lee, S. M. Lee, H. Y. Jung


In this paper, a generalized synchronization scheme, which is called function synchronization, for chaotic systems is studied. Based on Lyapunov method and active control method, we design the synchronization controller for the system such that the error dynamics between master and slave chaotic systems is asymptotically stable. For verification of our theory, computer and circuit simulations for a specific chaotic system is conducted.

Keywords: Simulation, Chaotic systems, Synchronization, Lyapunov method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293


1 Seismic Performance of Nuclear Power Plant Structures Subjected to Korean Earthquakes

Authors: T. H. Lee, D. D. Nguyen, H. S. Park, S. W. Yang, B. Thusa, Y. M. Kim


Currently, the design response spectrum (i.e., Nuclear Regulatory Commission - NRC 1.60 spectrum) with the peak ground acceleration (PGA) 0.3g (for Safe Shutdown Earthquake level) is specified for designing the new nuclear power plant (NPP) structures in Korea. However, the recent earthquakes in the region such as the 2016 Gyeongju and the 2017 Pohang earthquake showed that the possible PGA of ground motions can be larger than 0.3g. Therefore, there is a need to analyze the seismic performance of the existing NPP structures under these earthquakes. An NPP model, APR-1400, which is designed and built in Korea was selected for a case study. The NPP structure is numerically modeled in terms of lumped-mass stick elements using OpenSees framework. The floor acceleration and displacement of components are measured to quantify the responses of components. The numerical results show that the floor spectral accelerations are significantly amplified in the components subjected to Korean earthquakes. A comparison between floor response spectra of Korean earthquakes and the NRC design motion highlights that the seismic design level of NPP components under an earthquake should be thoroughly reconsidered. Additionally, a seismic safety assessment of the equipment and relays attached to main structures is also required.

Keywords: Nuclear Power Plant, floor response spectra, Korean earthquake, NRC spectrum

Procedia PDF Downloads 34