M. Nayeripour

Publications

6 An ACO Based Algorithm for Distribution Networks Including Dispersed Generations

Authors: T. Niknam, M. Nayeripour, B. Bahmani Firouzi

Abstract:

With Power system movement toward restructuring along with factors such as life environment pollution, problems of transmission expansion and with advancement in construction technology of small generation units, it is expected that small units like wind turbines, fuel cells, photovoltaic, ... that most of the time connect to the distribution networks play a very essential role in electric power industry. With increase in developing usage of small generation units, management of distribution networks should be reviewed. The target of this paper is to present a new method for optimal management of active and reactive power in distribution networks with regard to costs pertaining to various types of dispersed generations, capacitors and cost of electric energy achieved from network. In other words, in this method it-s endeavored to select optimal sources of active and reactive power generation and controlling equipments such as dispersed generations, capacitors, under load tapchanger transformers and substations in a way that firstly costs in relation to them are minimized and secondly technical and physical constraints are regarded. Because the optimal management of distribution networks is an optimization problem with continuous and discrete variables, the new evolutionary method based on Ant Colony Algorithm has been applied. The simulation results of the method tested on two cases containing 23 and 34 buses exist and will be shown at later sections.

Keywords: Distributed Generation, Optimal Operation Management of distribution networks, Ant Colony Optimization(ACO)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1350
5 Effect of Distributed Generators on the Optimal Operation of Distribution Networks

Authors: T. Niknam, M. Nayeripour, J. Olamaei

Abstract:

This paper presents an approach for daily optimal operation of distribution networks considering Distributed Generators (DGs). Due to private ownership of DGs, a cost based compensation method is used to encourage DGs in active and reactive power generation. The objective function is summation of electrical energy generated by DGs and substation bus (main bus) in the next day. A genetic algorithm is used to solve the optimal operation problem. The approach is tested on an IEEE34 buses distribution feeder.

Keywords: Genetic Algorithm, Distributed Generator, Daily Optimal Operation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1218
4 Application of a New Hybrid Optimization Algorithm on Cluster Analysis

Authors: B.Bahmani Firouzi, T. Niknam, M. Nayeripour

Abstract:

Clustering techniques have received attention in many areas including engineering, medicine, biology and data mining. The purpose of clustering is to group together data points, which are close to one another. The K-means algorithm is one of the most widely used techniques for clustering. However, K-means has two shortcomings: dependency on the initial state and convergence to local optima and global solutions of large problems cannot found with reasonable amount of computation effort. In order to overcome local optima problem lots of studies done in clustering. This paper is presented an efficient hybrid evolutionary optimization algorithm based on combining Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO), called PSO-ACO, for optimally clustering N object into K clusters. The new PSO-ACO algorithm is tested on several data sets, and its performance is compared with those of ACO, PSO and K-means clustering. The simulation results show that the proposed evolutionary optimization algorithm is robust and suitable for handing data clustering.

Keywords: Data Clustering, K-Means Clustering, Particle Swarm Optimization (PSO), ant colony optimization (ACO), Hybrid evolutionary optimization algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839
3 Distribution Feeder Reconfiguration Considering Distributed Generators

Authors: T. Niknam, M. Nayeripour, R. Khorshidi

Abstract:

Recently, distributed generation technologies have received much attention for the potential energy savings and reliability assurances that might be achieved as a result of their widespread adoption. Fueling the attention have been the possibilities of international agreements to reduce greenhouse gas emissions, electricity sector restructuring, high power reliability requirements for certain activities, and concern about easing transmission and distribution capacity bottlenecks and congestion. So it is necessary that impact of these kinds of generators on distribution feeder reconfiguration would be investigated. This paper presents an approach for distribution reconfiguration considering Distributed Generators (DGs). The objective function is summation of electrical power losses A Tabu search optimization is used to solve the optimal operation problem. The approach is tested on a real distribution feeder.

Keywords: Genetic Algorithm, Distributed Generator, Daily Optimal Operation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1370
2 A New Evolutionary Algorithm for Cluster Analysis

Authors: B.Bahmani Firouzi, T. Niknam, M. Nayeripour

Abstract:

Clustering is a very well known technique in data mining. One of the most widely used clustering techniques is the kmeans algorithm. Solutions obtained from this technique depend on the initialization of cluster centers and the final solution converges to local minima. In order to overcome K-means algorithm shortcomings, this paper proposes a hybrid evolutionary algorithm based on the combination of PSO, SA and K-means algorithms, called PSO-SA-K, which can find better cluster partition. The performance is evaluated through several benchmark data sets. The simulation results show that the proposed algorithm outperforms previous approaches, such as PSO, SA and K-means for partitional clustering problem.

Keywords: Data Clustering, Particle Swarm Optimization (PSO), K-means algorithm, Hybrid evolutionary optimization algorithm, Simulated Annealing (SA)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872
1 Design of a Three Phase Active Power Filter with Sliding Mode Control and Energy Feedback

Authors: T. Niknam, M. Nayeripour

Abstract:

Nonlinear and unbalance loads in three phase networks create harmonics and losses. Active and passive filters are used for elimination or reduction of these effects. Passive filters have some limitations. For example, they are designed only for a specific frequency and they may cause to resonance in the network at the point of common coupling. The other drawback of a passive filter is that the sizes of required elements are normally large. The active filter can improve some of limitations of passive filter for example; they can eliminate more than one harmonic and don't cause resonance in the network. In this paper inverter analysis have been done simultaneously in three phase and the RL impedance of the line have been considered. A sliding mode control based on energy feedback of capacitors is employed in the design with this method, the dynamic speed of the filter is improved effectively and harmonics and load unbalance is compensating quickly.

Keywords: Inverter, shunt active filter, harmonic, sliding mode control, energy feedback

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1432